Diverse Self-Assembled Molecular Architectures Promoted by C–H···O and C–H···Cl Hydrogen Bonds in a Triad of α-Diketone, α-Ketoimine, and an Imidorhenium Complex: A Unified Analysis Based on XRD, NEDA, SAPT, QTAIM, and IBSI Studies

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-11-02 DOI:10.1021/acsomega.4c0770210.1021/acsomega.4c07702
Ankita Sinha, Suphal Sen, Tejender Singh, Aniruddha Ghosh, Satyen Saha, Krishanu Bandyopadhyay, Arindam Dey, Suparna Banerjee* and Jaydip Gangopadhyay*, 
{"title":"Diverse Self-Assembled Molecular Architectures Promoted by C–H···O and C–H···Cl Hydrogen Bonds in a Triad of α-Diketone, α-Ketoimine, and an Imidorhenium Complex: A Unified Analysis Based on XRD, NEDA, SAPT, QTAIM, and IBSI Studies","authors":"Ankita Sinha,&nbsp;Suphal Sen,&nbsp;Tejender Singh,&nbsp;Aniruddha Ghosh,&nbsp;Satyen Saha,&nbsp;Krishanu Bandyopadhyay,&nbsp;Arindam Dey,&nbsp;Suparna Banerjee* and Jaydip Gangopadhyay*,&nbsp;","doi":"10.1021/acsomega.4c0770210.1021/acsomega.4c07702","DOIUrl":null,"url":null,"abstract":"<p >X-ray structural elucidation, supramolecular self-assembly, and energetics of existential noncovalent interactions for a triad comprising α-diketone, α-ketoimine, and an imidorhenium complex are highlighted in this report. Molecular packing reveals a self-assembled 2D network stabilized by the C–H···O H-bonds for the α-diketone (benzil), and the first structural report of Brown and Sadanaga stressing on the prevalence of <i>only the van der Waals forces</i> seems to be an oversimplified conjecture. In the α-ketoimine, the imine nitrogen atom undergoes intramolecular N···H interaction to render itself inert toward intermolecular C–H···N interaction and exhibits two types of C–H···O H-bonds in consequence to generate a self-assembled 2D molecular architecture. The imidorhenium complex features a self-aggregated 3D packing engendered by the interplay of C–H···Cl H-bonds along with the ancillary C–H···π, C···C, and C···Cl contacts. To the best of our knowledge, in rhenium chemistry, this imidorhenium complex unravels the first example of self-associated 3D molecular packing constructed by the directional hydrogen bonds of C–H···Cl type. The presence of characteristic supramolecular synthons, viz., R<sub>2</sub><sup>2</sup>(12), R<sub>2</sub><sup>2</sup>(16), and R<sub>2</sub><sup>2</sup>(14), in the α-diketone, α-ketoimine, and imidorhenium complex, respectively, has prompted us to delve into the energetics of noncovalent interactions. Symmetry-adapted perturbation theory analysis has authenticated a stability order: R<sub>2</sub><sup>2</sup>(14) &gt; R<sub>2</sub><sup>2</sup>(12) &gt; R<sub>2</sub><sup>2</sup>(16) based on the interaction energy values of −25.97, −9.93, and −4.98 kcal/mol, respectively. The respective average contributions of the long-range dispersion, electrostatic, and induction forces are 58.5, 32.8, and 8.7%, respectively, for the intermolecular C–H···O interactions. The C–H···Cl interactions experience comparable contribution from the dispersion force (57.9% on average), although the electrostatic and induction forces contribute much less, 28.0 and 14.1%, respectively, on average. The natural energy decomposition analysis has further attested that the short-range, interfragment charge transfer occurring via the lp(O/Cl) → σ*(C–H) routes contributes 17–25% of the total attractive force for the C–H···O and C–H···Cl interactions. Quantum theory of atoms in molecules analysis unfolds a first-order exponential decay relation (<i>y</i> = 8.1043<i>e</i><sup>–<i>x</i>/0.4095</sup>) between the electron density at the bond critical point and the distance of noncovalent interactions. The distances of noncovalent interactions in the lattices are internally governed by the individual packing patterns rather than the chemical nature of the H-bond donors and acceptors. Intrinsic bond strength index analysis shows promise to correlate the electron density at BCP with the SAPT-derived interaction energy for the noncovalent interactions. Two factors: (i) nearly half the HOMO–LUMO energy difference for the imidorhenium complex (∼30 kcal/mol) compared to the organics, and (ii) ∼60% localization of HOMO over the <i>mer</i>-ReCl<sub>3</sub> moiety clearly indicate an enhanced polarizability of the complex facilitating the growth of weak C–H···Cl H-bonds.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 45","pages":"45518–45536 45518–45536"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07702","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c07702","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray structural elucidation, supramolecular self-assembly, and energetics of existential noncovalent interactions for a triad comprising α-diketone, α-ketoimine, and an imidorhenium complex are highlighted in this report. Molecular packing reveals a self-assembled 2D network stabilized by the C–H···O H-bonds for the α-diketone (benzil), and the first structural report of Brown and Sadanaga stressing on the prevalence of only the van der Waals forces seems to be an oversimplified conjecture. In the α-ketoimine, the imine nitrogen atom undergoes intramolecular N···H interaction to render itself inert toward intermolecular C–H···N interaction and exhibits two types of C–H···O H-bonds in consequence to generate a self-assembled 2D molecular architecture. The imidorhenium complex features a self-aggregated 3D packing engendered by the interplay of C–H···Cl H-bonds along with the ancillary C–H···π, C···C, and C···Cl contacts. To the best of our knowledge, in rhenium chemistry, this imidorhenium complex unravels the first example of self-associated 3D molecular packing constructed by the directional hydrogen bonds of C–H···Cl type. The presence of characteristic supramolecular synthons, viz., R22(12), R22(16), and R22(14), in the α-diketone, α-ketoimine, and imidorhenium complex, respectively, has prompted us to delve into the energetics of noncovalent interactions. Symmetry-adapted perturbation theory analysis has authenticated a stability order: R22(14) > R22(12) > R22(16) based on the interaction energy values of −25.97, −9.93, and −4.98 kcal/mol, respectively. The respective average contributions of the long-range dispersion, electrostatic, and induction forces are 58.5, 32.8, and 8.7%, respectively, for the intermolecular C–H···O interactions. The C–H···Cl interactions experience comparable contribution from the dispersion force (57.9% on average), although the electrostatic and induction forces contribute much less, 28.0 and 14.1%, respectively, on average. The natural energy decomposition analysis has further attested that the short-range, interfragment charge transfer occurring via the lp(O/Cl) → σ*(C–H) routes contributes 17–25% of the total attractive force for the C–H···O and C–H···Cl interactions. Quantum theory of atoms in molecules analysis unfolds a first-order exponential decay relation (y = 8.1043ex/0.4095) between the electron density at the bond critical point and the distance of noncovalent interactions. The distances of noncovalent interactions in the lattices are internally governed by the individual packing patterns rather than the chemical nature of the H-bond donors and acceptors. Intrinsic bond strength index analysis shows promise to correlate the electron density at BCP with the SAPT-derived interaction energy for the noncovalent interactions. Two factors: (i) nearly half the HOMO–LUMO energy difference for the imidorhenium complex (∼30 kcal/mol) compared to the organics, and (ii) ∼60% localization of HOMO over the mer-ReCl3 moiety clearly indicate an enhanced polarizability of the complex facilitating the growth of weak C–H···Cl H-bonds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
α-二酮、α-酮亚胺和亚胺络合物三元组中由 C-H-O 和 C-H-Cl 氢键促进的多样化自组装分子结构:基于 XRD、NEDA、SAPT、QTAIM 和 IBSI 研究的统一分析
本报告重点介绍了由α-二酮、α-酮亚胺和亚胺络合物组成的三元体的 X 射线结构阐释、超分子自组装和存在非共价相互作用的能量学。α-二酮(苯齐尔)的分子堆积显示了一个由 C-H-O 氢键稳定的自组装二维网络,而 Brown 和 Sadanaga 的第一份结构报告强调范德华力的普遍存在似乎是一个过于简单的猜想。在α-酮亚胺中,亚胺氮原子通过分子内的 N-H 相互作用,使其本身对分子间的 C-H-N 相互作用具有惰性,并因此表现出两种类型的 C-H-O H 键,从而产生一种自组装的二维分子结构。亚胺鎓复合物的特点是,C-H--Cl H 键与辅助的 C-H--π、C--C 和 C-Cl 接触相互作用,产生自组装三维堆积。据我们所知,在铼化学领域,这种亚铱铼配合物首次揭示了由 C-H-Cl 型定向氢键构建的自结合三维分子填料。α-二酮、α-酮亚胺和亚胺络合物中分别出现了特征性的超分子合子,即 R22(12)、R22(16) 和 R22(14),这促使我们深入研究非共价相互作用的能量学。对称适配扰动理论分析证实了一种稳定顺序:R22(14) > R22(12) > R22(16) 的相互作用能值分别为 -25.97, -9.93 和 -4.98 kcal/mol。分子间 C-H-O 相互作用的长程色散力、静电力和感应力的平均贡献率分别为 58.5%、32.8% 和 8.7%。在 C-H-Cl 相互作用中,分散力的贡献率相当(平均为 57.9%),但静电力和感应力的贡献率要低得多,平均分别为 28.0% 和 14.1%。自然能量分解分析进一步证明,通过 lp(O/Cl) → σ*(C-H)途径发生的短程碎片间电荷转移占 C-H-O 和 C-H-Cl 相互作用总吸引力的 17-25%。分子中原子的量子理论分析揭示了键临界点电子密度与非共价相互作用距离之间的一阶指数衰减关系(y = 8.1043e-x/0.4095)。晶格中的非共价相互作用距离在内部受单个堆积模式的制约,而不是受 H 键供体和受体的化学性质的制约。内在键强度指数分析表明,BCP 处的电子密度与 SAPT 得出的非共价相互作用能量之间存在关联。有两个因素(i) 与有机物相比,亚胺鎓复合物的 HOMO-LUMO 能量差(∼30 kcal/mol)几乎只有有机物的一半;(ii) HOMO 在 mer-ReCl3 分子上的定位(∼60%)清楚地表明该复合物的极化性增强,有利于弱 C-H-Cl H 键的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Tumor-Targeted Magnetic Micelles for Magnetic Resonance Imaging, Drug Delivery, and Overcoming Multidrug Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1