Improvements in Fast Mass Microscopy for Large-Area Samples

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-10-28 DOI:10.1021/acs.analchem.4c0348010.1021/acs.analchem.4c03480
Edith Sandström, Pascal Huysmans, Frans Giskes, Paul Laeven, Sebastiaan Van Nuffel, Ron M. A. Heeren and Ian G. M. Anthony*, 
{"title":"Improvements in Fast Mass Microscopy for Large-Area Samples","authors":"Edith Sandström,&nbsp;Pascal Huysmans,&nbsp;Frans Giskes,&nbsp;Paul Laeven,&nbsp;Sebastiaan Van Nuffel,&nbsp;Ron M. A. Heeren and Ian G. M. Anthony*,&nbsp;","doi":"10.1021/acs.analchem.4c0348010.1021/acs.analchem.4c03480","DOIUrl":null,"url":null,"abstract":"<p >Mass spectrometry imaging (MSI) is a technique that analyzes the chemical information and spatial distribution of surface analytes. Most MSI studies are conducted in microprobe mode, in which a mass spectrum is collected for each pixel to create a mass image. Thus, the spatial resolution, sample imaging area, and imaging speed are linked. In this mode, halving the pixel size quadruples the analytical time, which presents a practical limit on the high spatial resolution MSI throughput. Fast mass microscopy (FMM) is, in contrast, a microscope-mode MSI technique that decouples spatial resolution and imaging speed. FMM circumvents the linear-quadratic relationship of pixel size and analytical time, which enables increased imaging size area and the analytical speed achievable. In this study, we implement instrument modifications to the FMM system, including the addition of linear encoders that enable roughly 8.5× faster imaging than was previously achieved, allowing a 42.5 × 26 mm<sup>2</sup> sample area to be imaged at a 1 μm pixel size in &lt;4.5 min. Linear encoders also enable the alignment of multipass images that increase image homogeneity and signal intensity. The applicability of FMM to large area samples has made it important to define the tolerance to height variations of the technique, which was determined to be at least 218 ± 0.03 (<i>n</i> = 3) μm.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"96 45","pages":"18037–18042 18037–18042"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.analchem.4c03480","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c03480","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mass spectrometry imaging (MSI) is a technique that analyzes the chemical information and spatial distribution of surface analytes. Most MSI studies are conducted in microprobe mode, in which a mass spectrum is collected for each pixel to create a mass image. Thus, the spatial resolution, sample imaging area, and imaging speed are linked. In this mode, halving the pixel size quadruples the analytical time, which presents a practical limit on the high spatial resolution MSI throughput. Fast mass microscopy (FMM) is, in contrast, a microscope-mode MSI technique that decouples spatial resolution and imaging speed. FMM circumvents the linear-quadratic relationship of pixel size and analytical time, which enables increased imaging size area and the analytical speed achievable. In this study, we implement instrument modifications to the FMM system, including the addition of linear encoders that enable roughly 8.5× faster imaging than was previously achieved, allowing a 42.5 × 26 mm2 sample area to be imaged at a 1 μm pixel size in <4.5 min. Linear encoders also enable the alignment of multipass images that increase image homogeneity and signal intensity. The applicability of FMM to large area samples has made it important to define the tolerance to height variations of the technique, which was determined to be at least 218 ± 0.03 (n = 3) μm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大面积样品快速质量显微镜的改进
质谱成像(MSI)是一种分析表面分析物的化学信息和空间分布的技术。大多数 MSI 研究都是在微探针模式下进行的,在这种模式下,每个像素都会收集质谱,从而生成质量图像。因此,空间分辨率、样品成像区域和成像速度是相互关联的。在这种模式下,像素尺寸减半会使分析时间延长四倍,这对高空间分辨率 MSI 吞吐量造成了实际限制。相比之下,快速质谱显微镜(FMM)是一种显微镜模式的 MSI 技术,它将空间分辨率和成像速度分离开来。FMM 规避了像素大小与分析时间之间的线性二次关系,从而扩大了成像面积,提高了分析速度。在这项研究中,我们对 FMM 系统的仪器进行了改进,包括增加了线性编码器,使成像速度比以前提高了约 8.5 倍,从而能够在 4.5 分钟内以 1 μm 的像素尺寸对 42.5 × 26 平方毫米的样品区域进行成像。线性编码器还能对准多通道图像,从而提高图像的均匀性和信号强度。由于 FMM 适用于大面积样本,因此必须确定该技术对高度变化的容差,经确定,高度变化容差至少为 218 ± 0.03 (n = 3) μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Luciferase-Based Reporter System for Investigating GPx4-Mediated Ferroptosis and Its Therapeutic Implications in Diabetes Femtomolar Electrochemical Detection of 4 nm Diameter Citrate-Stabilized Gold Nanoparticles by Electrophoretic and Electrochemical Amplification Portable Capillary-Microplasma Optical Emission Spectrometer: Gold-Labeled and Silver-Stained Signal Amplification for Carcinoembryonic Antigen Detection Mineralogical Analysis of Solid-Sample Flame Emission Spectra by Machine Learning Unraveling O-Glycan Diversity of Mucins: Insights from SmE Mucinase and Ultraviolet Photodissociation Mass Spectrometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1