{"title":"Poly(L-lactic acid)-BiFeO3/Ti3C2 Scaffolds for Antibacterial Sonodynamic Therapy","authors":"Cijun Shuai, Xingming Long, Yingxin Yang, Bingxin Sun, Zihao Zhang, Guoyong Wang* and Shuping Peng*, ","doi":"10.1021/acsanm.4c0508210.1021/acsanm.4c05082","DOIUrl":null,"url":null,"abstract":"<p >Bacterial infection is a severe challenge after artificial transplantation due to the lack of an antibacterial functional implant, which results in delayed healing or even transplant failure. Herein, a sonodynamic antibacterial strategy was proposed by integrating a BiFeO<sub>3</sub>/Ti<sub>3</sub>C<sub>2</sub> heterojunction into a three-dimensional-printed poly-<span>L</span>-lactic acid scaffold. BiFeO<sub>3</sub> can be stimulated using ultrasonic energy to generate carriers. Ti<sub>3</sub>C<sub>2</sub>, with good conductivity, can form an interfacial transfer channel with BiFeO<sub>3</sub>, accelerating interfacial charge transfer. Additionally, forming a Schottky barrier between BiFeO<sub>3</sub> and Ti<sub>3</sub>C<sub>2</sub> effectively suppressed electron backflow. The separation of electron–hole pairs was significantly enhanced, thus improving the yield of reactive oxygen species. The results demonstrated that the antibacterial scaffold exhibited antibacterial rates of 93 and 91% against Gram-negative <i>Escherichia coli</i> and Gram-positive <i>Staphylococcus aureus</i> exposed to ultrasound, respectively. Additionally, the poly(<span>L</span>-lactic acid)-BiFeO<sub>3</sub>/Ti<sub>3</sub>C<sub>2</sub> scaffold possessed good biocompatibility and showed great potential for bone regeneration.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05082","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial infection is a severe challenge after artificial transplantation due to the lack of an antibacterial functional implant, which results in delayed healing or even transplant failure. Herein, a sonodynamic antibacterial strategy was proposed by integrating a BiFeO3/Ti3C2 heterojunction into a three-dimensional-printed poly-L-lactic acid scaffold. BiFeO3 can be stimulated using ultrasonic energy to generate carriers. Ti3C2, with good conductivity, can form an interfacial transfer channel with BiFeO3, accelerating interfacial charge transfer. Additionally, forming a Schottky barrier between BiFeO3 and Ti3C2 effectively suppressed electron backflow. The separation of electron–hole pairs was significantly enhanced, thus improving the yield of reactive oxygen species. The results demonstrated that the antibacterial scaffold exhibited antibacterial rates of 93 and 91% against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus exposed to ultrasound, respectively. Additionally, the poly(L-lactic acid)-BiFeO3/Ti3C2 scaffold possessed good biocompatibility and showed great potential for bone regeneration.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.