{"title":"Distance-Based Fluorescent Immunosensor for Point-of-Care Test of Illegal Additives through the Gas-Producing Nanozyme","authors":"Guosheng Cui, Yongbin Huang, Haoran Shen, Aori Qileng, Weipeng Liu* and Yingju Liu*, ","doi":"10.1021/acs.analchem.4c0442710.1021/acs.analchem.4c04427","DOIUrl":null,"url":null,"abstract":"<p >The colorimetric point-of-care test (POCT) offers a rapid and efficient method for detecting specific targets in real samples. However, traditional colorimetric methods often rely on complex signal amplification techniques or electronic devices to enhance detection sensitivity, which can inadvertently increase both cost and time, thus contradicting the fundamental goals of visual detection methods. Here, we presented a distance-based fluorescent immunosensor that utilized a gas-producing nanozyme for continuous gas production reaction as a signal. Specifically, the SOM-ZIF-8@Pt nanozyme catalyzed the production of O<sub>2</sub> from H<sub>2</sub>O<sub>2</sub> to cause an obvious increase in the pressure within a sealed chamber, thus driving the production of H<sub>2</sub>S to quench the fluorescence of CsPbBr<sub>3</sub> on the walls of the capillaries. Based on the competitive immunoassay, the fluorescence quenching lengths were relative with the concentration of aminopyrine in the range from 0.2 to 20 ng/L; thus, the fluorescent POCT-based homemade device was realized through the amplification of distance-based signals facilitated by the continuous gas production reaction. This strategy provides an effective way to realize POCT assays in resource-limited areas by transforming pressure variations into directly observable signals. Furthermore, distinguished by its high sensitivity, ease of operation, and portability, it also represents a significant advancement in biomedical diagnostics, particularly within home healthcare and clinical POCT.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"96 45","pages":"18221–18229 18221–18229"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c04427","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The colorimetric point-of-care test (POCT) offers a rapid and efficient method for detecting specific targets in real samples. However, traditional colorimetric methods often rely on complex signal amplification techniques or electronic devices to enhance detection sensitivity, which can inadvertently increase both cost and time, thus contradicting the fundamental goals of visual detection methods. Here, we presented a distance-based fluorescent immunosensor that utilized a gas-producing nanozyme for continuous gas production reaction as a signal. Specifically, the SOM-ZIF-8@Pt nanozyme catalyzed the production of O2 from H2O2 to cause an obvious increase in the pressure within a sealed chamber, thus driving the production of H2S to quench the fluorescence of CsPbBr3 on the walls of the capillaries. Based on the competitive immunoassay, the fluorescence quenching lengths were relative with the concentration of aminopyrine in the range from 0.2 to 20 ng/L; thus, the fluorescent POCT-based homemade device was realized through the amplification of distance-based signals facilitated by the continuous gas production reaction. This strategy provides an effective way to realize POCT assays in resource-limited areas by transforming pressure variations into directly observable signals. Furthermore, distinguished by its high sensitivity, ease of operation, and portability, it also represents a significant advancement in biomedical diagnostics, particularly within home healthcare and clinical POCT.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.