Mitigating Calendar Aging in Si-NMC Batteries with Advanced Dual-Salt Glyme Electrolytes

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Polymer Materials Pub Date : 2024-10-29 DOI:10.1021/acs.chemmater.4c0097110.1021/acs.chemmater.4c00971
Guang Yang*, Katie Browning, Harry M Meyer III, Yuanshun Li, Nathan R. Neale, Gabriel M. Veith and Jagjit Nanda*, 
{"title":"Mitigating Calendar Aging in Si-NMC Batteries with Advanced Dual-Salt Glyme Electrolytes","authors":"Guang Yang*,&nbsp;Katie Browning,&nbsp;Harry M Meyer III,&nbsp;Yuanshun Li,&nbsp;Nathan R. Neale,&nbsp;Gabriel M. Veith and Jagjit Nanda*,&nbsp;","doi":"10.1021/acs.chemmater.4c0097110.1021/acs.chemmater.4c00971","DOIUrl":null,"url":null,"abstract":"<p >In addressing the critical challenge of calendar aging in silicon (Si)-based lithium-ion batteries, this study introduces a groundbreaking strategy utilizing glyme-type dual-salt electrolytes (lithium bis(trifluoromethanesulfonyl)imide [LiTFSI] and lithium difluoro(oxalato)borate [LiDFOB]). These electrolytes are demonstrated to significantly mitigate parasitic reactions and capacity loss in Si-NMC (lithium nickel manganese cobalt oxide) full cells, especially when compared with traditional carbonate-based electrolytes. Our exhaustive mechanistic analysis reveals that such electrolytes not only preserve the integrity of the Si anode but also improve the cathode/electrolyte interphases (CEI) through the formation of a conformal coating on the high-voltage cathode surface. This dual-salt approach, enhanced by the addition of a phosphate additive, effectively decelerates calendar aging, marking a substantial advance in the quest for durable and reliable Si-based energy storage technologies. The findings underscore the vital role of electrolyte composition in extending the calendar life of Si batteries, offering an alternative avenue toward maximizing the performance and longevity of next-generation Li–Si batteries.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00971","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In addressing the critical challenge of calendar aging in silicon (Si)-based lithium-ion batteries, this study introduces a groundbreaking strategy utilizing glyme-type dual-salt electrolytes (lithium bis(trifluoromethanesulfonyl)imide [LiTFSI] and lithium difluoro(oxalato)borate [LiDFOB]). These electrolytes are demonstrated to significantly mitigate parasitic reactions and capacity loss in Si-NMC (lithium nickel manganese cobalt oxide) full cells, especially when compared with traditional carbonate-based electrolytes. Our exhaustive mechanistic analysis reveals that such electrolytes not only preserve the integrity of the Si anode but also improve the cathode/electrolyte interphases (CEI) through the formation of a conformal coating on the high-voltage cathode surface. This dual-salt approach, enhanced by the addition of a phosphate additive, effectively decelerates calendar aging, marking a substantial advance in the quest for durable and reliable Si-based energy storage technologies. The findings underscore the vital role of electrolyte composition in extending the calendar life of Si batteries, offering an alternative avenue toward maximizing the performance and longevity of next-generation Li–Si batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用先进的双盐甘氨酸电解质缓解硅-NMC 电池的日历老化
为解决硅(Si)基锂离子电池日历老化这一关键挑战,本研究提出了一种突破性策略,即利用甘油型双盐电解质(双(三氟甲磺酰)亚胺锂 [LiTFSI] 和二氟(草酸)硼酸锂 [LiDFOB])。与传统的碳酸盐基电解质相比,这些电解质能显著减轻 Si-NMC(锂镍锰钴氧化物)全电池中的寄生反应和容量损失。我们详尽的机理分析表明,这种电解质不仅能保持硅阳极的完整性,还能通过在高压阴极表面形成保形涂层来改善阴极/电解质相间性(CEI)。这种双盐方法通过添加磷酸盐添加剂得到增强,有效地减缓了日历老化,标志着在寻求耐用可靠的硅基储能技术方面取得了实质性进展。这些发现强调了电解质成分在延长硅电池日历寿命方面的重要作用,为最大限度地提高下一代锂硅电池的性能和寿命提供了另一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
期刊最新文献
Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. "Lupus Myelitis" Revisited: A Retrospective Single-Center Study of Myelitis Associated With Rheumatologic Disease. Missing Full Disclosures. Clinical and Radiographic Improvement Following Steroid Therapy in Subacute Post-Traumatic Ascending Myelopathy. Lumipulse-Measured Cerebrospinal Fluid Biomarkers for the Early Detection of Alzheimer Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1