Ailsa Geddis, Lorena Mendive-Tapia, Audreylia Sujantho, Erica Liu, Sarah McAughtrie, Richard Goodwin, Marc Vendrell and Colin J. Campbell*,
{"title":"Label-Free SERS Sensors for Real-Time Monitoring of Tyrosine Phosphorylation","authors":"Ailsa Geddis, Lorena Mendive-Tapia, Audreylia Sujantho, Erica Liu, Sarah McAughtrie, Richard Goodwin, Marc Vendrell and Colin J. Campbell*, ","doi":"10.1021/acs.analchem.4c0286010.1021/acs.analchem.4c02860","DOIUrl":null,"url":null,"abstract":"<p >Dysregulation of receptor tyrosine kinases (RTKs) has been shown to correlate with cancer cell proliferation and drug resistance. Thus, monitoring the activity of RTKs at a chemical level could provide new biomedical insights and methods to assess the drug efficacy. However, direct monitoring of kinase activity is challenging and most commonly relies on <i>in vitro</i> techniques such as Western blotting and ELISAs. Herein, we report the development of a gold nanoparticle-based surface-enhanced Raman scattering (SERS) sensor, which allows the real-time monitoring of tyrosine phosphorylation of a reporter peptide (Axltide) by the Axl enzyme. We demonstrate that our sensor shows strong signal localization, and we are able to detect tyrosine phosphorylation of the reporter peptide through chemical phosphorylation and enzymatically with similar peak changes to those observed in the spontaneous Raman spectra. Through monitoring the SERS spectrum, we can observe changes in phosphorylation in real time.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"96 45","pages":"17978–17983 17978–17983"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.analchem.4c02860","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c02860","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dysregulation of receptor tyrosine kinases (RTKs) has been shown to correlate with cancer cell proliferation and drug resistance. Thus, monitoring the activity of RTKs at a chemical level could provide new biomedical insights and methods to assess the drug efficacy. However, direct monitoring of kinase activity is challenging and most commonly relies on in vitro techniques such as Western blotting and ELISAs. Herein, we report the development of a gold nanoparticle-based surface-enhanced Raman scattering (SERS) sensor, which allows the real-time monitoring of tyrosine phosphorylation of a reporter peptide (Axltide) by the Axl enzyme. We demonstrate that our sensor shows strong signal localization, and we are able to detect tyrosine phosphorylation of the reporter peptide through chemical phosphorylation and enzymatically with similar peak changes to those observed in the spontaneous Raman spectra. Through monitoring the SERS spectrum, we can observe changes in phosphorylation in real time.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.