Baraa Werghi, Shikha Saini, Pin-Hung Chung, Abinash Kumar, Amani M. Ebrahim, Kristen Abels, Miaofang Chi, Frank Abild-Pedersen, Simon R. Bare* and Matteo Cargnello*,
{"title":"Dynamic Behavior of Pt Multimetallic Alloys for Active and Stable Propane Dehydrogenation Catalysts","authors":"Baraa Werghi, Shikha Saini, Pin-Hung Chung, Abinash Kumar, Amani M. Ebrahim, Kristen Abels, Miaofang Chi, Frank Abild-Pedersen, Simon R. Bare* and Matteo Cargnello*, ","doi":"10.1021/jacs.4c0942410.1021/jacs.4c09424","DOIUrl":null,"url":null,"abstract":"<p >Improving the use of platinum in propane dehydrogenation catalysts is a crucial aspect to increasing the efficiency and sustainability of propylene production. A known and practiced strategy involves incorporating more abundant metals in supported platinum catalysts, increasing its activity and stability while decreasing the overall loading. Here, using colloidal techniques to control the size and composition of the active phase, we show that Pt/Cu alloy nanoparticles supported on alumina (Pt/Cu/Al<sub>2</sub>O<sub>3</sub>) displayed elevated rates for propane dehydrogenation at low temperature compared to a monometallic Pt/Al<sub>2</sub>O<sub>3</sub> catalyst. We demonstrate that the enhanced catalytic activity is correlated with a higher surface Cu content and formation of a Pt-rich core and Cu-rich shell that isolates Pt sites and increases their intrinsic activity. However, rates declined on stream because of dynamic metal diffusion processes that led to a more uniform alloy structure. This transformation was only partially inhibited by adding excess hydrogen to the feed stream. Instead, cobalt was introduced to provide trimetallic Pt/Cu/Co catalysts with stabilized surface structure and stable activity and higher rates than the original Pt/Cu system. The structure–activity relationship insights in this work offer improved knowledge of propane dehydrogenation catalyst development featuring reduced Pt loadings and notable thermal stability for propylene production.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"30966–30975 30966–30975"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c09424","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Improving the use of platinum in propane dehydrogenation catalysts is a crucial aspect to increasing the efficiency and sustainability of propylene production. A known and practiced strategy involves incorporating more abundant metals in supported platinum catalysts, increasing its activity and stability while decreasing the overall loading. Here, using colloidal techniques to control the size and composition of the active phase, we show that Pt/Cu alloy nanoparticles supported on alumina (Pt/Cu/Al2O3) displayed elevated rates for propane dehydrogenation at low temperature compared to a monometallic Pt/Al2O3 catalyst. We demonstrate that the enhanced catalytic activity is correlated with a higher surface Cu content and formation of a Pt-rich core and Cu-rich shell that isolates Pt sites and increases their intrinsic activity. However, rates declined on stream because of dynamic metal diffusion processes that led to a more uniform alloy structure. This transformation was only partially inhibited by adding excess hydrogen to the feed stream. Instead, cobalt was introduced to provide trimetallic Pt/Cu/Co catalysts with stabilized surface structure and stable activity and higher rates than the original Pt/Cu system. The structure–activity relationship insights in this work offer improved knowledge of propane dehydrogenation catalyst development featuring reduced Pt loadings and notable thermal stability for propylene production.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.