{"title":"Using a New Pt(II) Source to Make Pt(II) Lantern-Shaped Cages, Including Low-Symmetry, Heteroleptic, and Multicavity Examples","authors":"Dan Preston, Zack T. Avery, Michael G. Gardiner","doi":"10.1002/anie.202418079","DOIUrl":null,"url":null,"abstract":"Current synthetic methods towards Pt(II) lantern-shaped cages involve the use of dry solvent, inert atmosphere, lengthy reaction times, and highly variable yields if isolated. Starting materials such as [Pt(CH3CN)4](BF4)2 suffer from a poor shelf-life, reducing the synthetic accessibility of various Pt(II) architectures. A new Pt(II) source (with varied counterions), [Pt(3-ClPy)4](X)2 (3-ClPy = 3-chloropyridine, X = BF4-, OTf-, NO3-), is developed and characterised, showing greatly enhanced shelf-life characteristics under ambient atmospheric conditions. Using this starting material, the assembly of Pt(II) lantern-shaped cages was completed in as little as 1.5 hours with wet solvent and ambient atmosphere. The first examples of low-symmetry, heteroleptic and multicavity Pt(II) lantern-shaped cages are reported using this approach. Attempts towards an M6L8 octahedron using a tritopic ligand instead generate an interesting M2L4 cage with unbound pyridyl arms. Ligands and cages are characterised by NMR spectroscopy, IR spectroscopy, mass spectrometry, and X-ray crystallography in some cases.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418079","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Current synthetic methods towards Pt(II) lantern-shaped cages involve the use of dry solvent, inert atmosphere, lengthy reaction times, and highly variable yields if isolated. Starting materials such as [Pt(CH3CN)4](BF4)2 suffer from a poor shelf-life, reducing the synthetic accessibility of various Pt(II) architectures. A new Pt(II) source (with varied counterions), [Pt(3-ClPy)4](X)2 (3-ClPy = 3-chloropyridine, X = BF4-, OTf-, NO3-), is developed and characterised, showing greatly enhanced shelf-life characteristics under ambient atmospheric conditions. Using this starting material, the assembly of Pt(II) lantern-shaped cages was completed in as little as 1.5 hours with wet solvent and ambient atmosphere. The first examples of low-symmetry, heteroleptic and multicavity Pt(II) lantern-shaped cages are reported using this approach. Attempts towards an M6L8 octahedron using a tritopic ligand instead generate an interesting M2L4 cage with unbound pyridyl arms. Ligands and cages are characterised by NMR spectroscopy, IR spectroscopy, mass spectrometry, and X-ray crystallography in some cases.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.