Phillip W Gingrich, Rezvan Chitsazi, Ansuman Biswas, Chunjie Jiang, Li Zhao, Joseph E Tym, Kevin M Brammer, Jun Li, Zhigang Shu, David S Maxwell, Jeffrey A Tacy, Ioan L Mica, Michael Darkoh, Patrizio di Micco, Kaitlyn P Russell, Paul Workman, Bissan Al-Lazikani
{"title":"canSAR 2024—an update to the public drug discovery knowledgebase","authors":"Phillip W Gingrich, Rezvan Chitsazi, Ansuman Biswas, Chunjie Jiang, Li Zhao, Joseph E Tym, Kevin M Brammer, Jun Li, Zhigang Shu, David S Maxwell, Jeffrey A Tacy, Ioan L Mica, Michael Darkoh, Patrizio di Micco, Kaitlyn P Russell, Paul Workman, Bissan Al-Lazikani","doi":"10.1093/nar/gkae1050","DOIUrl":null,"url":null,"abstract":"canSAR (https://cansar.ai) continues to serve as the largest publicly available platform for cancer-focused drug discovery and translational research. It integrates multidisciplinary data from disparate and otherwise siloed public data sources as well as data curated uniquely for canSAR. In addition, canSAR deploys a suite of curation and standardization tools together with AI algorithms to generate new knowledge from these integrated data to inform hypothesis generation. Here we report the latest updates to canSAR. As well as increasing available data, we provide enhancements to our algorithms to improve the offering to the user. Notably, our enhancements include a revised ligandability classifier leveraging Positive Unlabeled Learning that finds twice as many ligandable opportunities across the pocketome, and our revised chemical standardization pipeline and hierarchy better enables the aggregation of structurally related molecular records.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"98 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1050","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
canSAR (https://cansar.ai) continues to serve as the largest publicly available platform for cancer-focused drug discovery and translational research. It integrates multidisciplinary data from disparate and otherwise siloed public data sources as well as data curated uniquely for canSAR. In addition, canSAR deploys a suite of curation and standardization tools together with AI algorithms to generate new knowledge from these integrated data to inform hypothesis generation. Here we report the latest updates to canSAR. As well as increasing available data, we provide enhancements to our algorithms to improve the offering to the user. Notably, our enhancements include a revised ligandability classifier leveraging Positive Unlabeled Learning that finds twice as many ligandable opportunities across the pocketome, and our revised chemical standardization pipeline and hierarchy better enables the aggregation of structurally related molecular records.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.