In-situ QXAFS study on CO and H2 adsorption on Pt in solid [PtAu8(PPh3)8]-H[PMo12O40]

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-11-14 DOI:10.1039/d4nr03785e
Tomoki Matsuyama, Taishi Suzuki, Yuto Oba, Soichi Kikkawa, Sayaka Uchida, Junya Ohyama, Kotaro Higashi, Takuma Kaneko, Kazuo Kato, Kiyofumi Nitta, Tomoya Uruga, Keisuke Hatada, Kazuki Yoshikawa, Amelie Heilmaier, Kosuke Suzuki, Kentaro Yonesato, Kazuya Yamaguchi, Naoki Nakatani, Hideyuki Kawasoko, Seiji Yamazoe
{"title":"In-situ QXAFS study on CO and H2 adsorption on Pt in solid [PtAu8(PPh3)8]-H[PMo12O40]","authors":"Tomoki Matsuyama, Taishi Suzuki, Yuto Oba, Soichi Kikkawa, Sayaka Uchida, Junya Ohyama, Kotaro Higashi, Takuma Kaneko, Kazuo Kato, Kiyofumi Nitta, Tomoya Uruga, Keisuke Hatada, Kazuki Yoshikawa, Amelie Heilmaier, Kosuke Suzuki, Kentaro Yonesato, Kazuya Yamaguchi, Naoki Nakatani, Hideyuki Kawasoko, Seiji Yamazoe","doi":"10.1039/d4nr03785e","DOIUrl":null,"url":null,"abstract":"The adsorption behaviors of H2 and CO molecules in crown-motif [PtAu8(PPh3)8]-H[PMo12O40] (PtAu8-PMo12) solid were investigated by in-situ quick-scan X-ray absorption fine structure (QXAFS) measurements with time resolution of 0.1 s. The electronic state of Pt in the PtAu8-PMo12 was drastically changed by the adsorptions of H2 and CO molecules because of the formation of Pt-H2/Pt-CO interactions. The H2 adsorbed more rapidly (< 0.5 s) on Pt than CO did (~2.5 s) and showed reversible adsorption/desorption behavior on Pt atoms in the PtAu8-PMo12. The rapid adsorption of H2 is due to the fast diffusion of H2, which has smaller kinetic diameter than CO, in the narrow channels between the closed voids in PtAu8-PMo12. Meanwhile, CO irreversibly adsorbed on Pt, resulting in structural isomerization to the stable “chalice-motif” PtAu8, determined by XAFS analysis and density functional theory calculations. The structural isomerization is involved by pushing ligands aside to make space for CO adsorption since the void size near Pt in the crown-motif PtAu8-PMo12 is narrower than kinetic diameter of CO.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"127 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03785e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The adsorption behaviors of H2 and CO molecules in crown-motif [PtAu8(PPh3)8]-H[PMo12O40] (PtAu8-PMo12) solid were investigated by in-situ quick-scan X-ray absorption fine structure (QXAFS) measurements with time resolution of 0.1 s. The electronic state of Pt in the PtAu8-PMo12 was drastically changed by the adsorptions of H2 and CO molecules because of the formation of Pt-H2/Pt-CO interactions. The H2 adsorbed more rapidly (< 0.5 s) on Pt than CO did (~2.5 s) and showed reversible adsorption/desorption behavior on Pt atoms in the PtAu8-PMo12. The rapid adsorption of H2 is due to the fast diffusion of H2, which has smaller kinetic diameter than CO, in the narrow channels between the closed voids in PtAu8-PMo12. Meanwhile, CO irreversibly adsorbed on Pt, resulting in structural isomerization to the stable “chalice-motif” PtAu8, determined by XAFS analysis and density functional theory calculations. The structural isomerization is involved by pushing ligands aside to make space for CO adsorption since the void size near Pt in the crown-motif PtAu8-PMo12 is narrower than kinetic diameter of CO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固体[PtAu8(PPh3)8]-H[PMo12O40]中 CO 和 H2 在铂上吸附的原位 QXAFS 研究
通过时间分辨率为 0.1 秒的原位快速扫描 X 射线吸收精细结构(QXAFS)测量,研究了 H2 和 CO 分子在冠型 [PtAu8(PPh3)8]-H[PMo12O40](PtAu8-PMo12)固体中的吸附行为。由于 Pt-H2/Pt-CO 相互作用的形成,PtAu8-PMo12 中铂的电子状态因 H2 和 CO 分子的吸附而发生了急剧变化。与 CO(约 2.5 秒)相比,H2 在铂上的吸附速度更快(< 0.5 秒),并且在 PtAu8-PMo12 中的铂原子上表现出可逆的吸附/解吸行为。H2 的快速吸附是由于 H2 在 PtAu8-PMo12 闭合空隙之间的狭窄通道中的快速扩散,而 H2 的动力学直径比 CO 小。同时,通过 XAFS 分析和密度泛函理论计算,CO 不可逆地吸附在铂上,导致结构异构化为稳定的 "茶色基团 "PtAu8。由于冠型 PtAu8-PMo12 中铂附近的空隙尺寸比 CO 的动力学直径窄,因此结构异构化是通过将配体推向一边来为 CO 的吸附腾出空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
Holey etching strategy of siloxene nanosheets to improve the rate performance of photo-assisted Li–O2 batteries Enantiomorphic single component conducting nickel(II) and platinum(II) bis(diethyl-dddt) crystalline complexes† Facile synthesis of in situ carbon-coated CoS2 micro/nano-spheres as high-performance anode materials for sodium-ion batteries A layered Janus Metastructure for multi-physical detection based on second harmonic wave Correction: Cytomembrane-mimicking nanocarriers with a scaffold consisting of a CD44-targeted endogenous component for effective asparaginase supramolecule delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1