Multi-omics with dynamic network biomarker algorithm prefigures organ-specific metastasis of lung adenocarcinoma

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-14 DOI:10.1038/s41467-024-53849-3
Xiaoshen Zhang, Kai Xiao, Yaokai Wen, Fengying Wu, Guanghui Gao, Luonan Chen, Caicun Zhou
{"title":"Multi-omics with dynamic network biomarker algorithm prefigures organ-specific metastasis of lung adenocarcinoma","authors":"Xiaoshen Zhang, Kai Xiao, Yaokai Wen, Fengying Wu, Guanghui Gao, Luonan Chen, Caicun Zhou","doi":"10.1038/s41467-024-53849-3","DOIUrl":null,"url":null,"abstract":"<p>Efficacious strategies for early detection of lung cancer metastasis are of significance for improving the survival of lung cancer patients. Here we show the marker genes and serum secretome foreshadowing the lung cancer site-specific metastasis through dynamic network biomarker (DNB) algorithm, utilizing two clinical cohorts of four major types of lung cancer distant metastases, with single-cell RNA sequencing (scRNA-seq) of primary lesions and liquid chromatography-mass spectrometry data of sera. Also, we locate the intermediate status of cancer cells, along with its gene signatures, in each metastatic state trajectory that cancer cells at this stage still have no specific organotropism. Furthermore, an integrated neural network model based on the filtered scRNA-seq data is successfully constructed and validated to predict the metastatic state trajectory of cancer cells. Overall, our study provides an insight to locate the pre-metastasis status of lung cancer and primarily examines its clinical application value, contributing to the early detection of lung cancer metastasis in a more feasible and efficacious way.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53849-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Efficacious strategies for early detection of lung cancer metastasis are of significance for improving the survival of lung cancer patients. Here we show the marker genes and serum secretome foreshadowing the lung cancer site-specific metastasis through dynamic network biomarker (DNB) algorithm, utilizing two clinical cohorts of four major types of lung cancer distant metastases, with single-cell RNA sequencing (scRNA-seq) of primary lesions and liquid chromatography-mass spectrometry data of sera. Also, we locate the intermediate status of cancer cells, along with its gene signatures, in each metastatic state trajectory that cancer cells at this stage still have no specific organotropism. Furthermore, an integrated neural network model based on the filtered scRNA-seq data is successfully constructed and validated to predict the metastatic state trajectory of cancer cells. Overall, our study provides an insight to locate the pre-metastasis status of lung cancer and primarily examines its clinical application value, contributing to the early detection of lung cancer metastasis in a more feasible and efficacious way.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多组学与动态网络生物标记物算法预示肺腺癌的器官特异性转移
早期发现肺癌转移的有效策略对提高肺癌患者的生存率具有重要意义。在此,我们利用四个主要类型肺癌远处转移的两个临床队列、原发病灶的单细胞 RNA 测序(scRNA-seq)和血清的液相色谱-质谱数据,通过动态网络生物标记(DNB)算法,展示了预示肺癌特定部位转移的标记基因和血清分泌组。同时,我们还在每个转移状态轨迹中定位了癌细胞的中间状态及其基因特征,在这一阶段的癌细胞仍没有特定的有机体。此外,我们还成功构建并验证了基于筛选的 scRNA-seq 数据的集成神经网络模型,以预测癌细胞的转移状态轨迹。总之,我们的研究为肺癌转移前状态的定位提供了洞察力,并主要考察了其临床应用价值,有助于以更可行、更有效的方法早期检测肺癌转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
High-voltage and intrinsically safe electrolytes for Li metal batteries Observing character displacement from process to pattern in a novel vertebrate community Co-infiltration and dynamic formation of Pd3ZnCx intermetallic carbide by syngas boosting selective hydrogenation of acetylene Experimental realization of on-chip few-photon control around exceptional points Force-transducing molecular ensembles at growing microtubule tips control mitotic spindle size
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1