Task-Oriented Tool Manipulation With Robotic Dexterous Hands: A Knowledge Graph Approach From Fingers to Functionality

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Cybernetics Pub Date : 2024-11-13 DOI:10.1109/TCYB.2024.3487845
Fan Yang;Wenrui Chen;Haoran Lin;Sijie Wu;Xin Li;Zhiyong Li;Yaonan Wang
{"title":"Task-Oriented Tool Manipulation With Robotic Dexterous Hands: A Knowledge Graph Approach From Fingers to Functionality","authors":"Fan Yang;Wenrui Chen;Haoran Lin;Sijie Wu;Xin Li;Zhiyong Li;Yaonan Wang","doi":"10.1109/TCYB.2024.3487845","DOIUrl":null,"url":null,"abstract":"A primary challenge in robotic tool use is achieving precise manipulation with dexterous robotic hands to mimic human actions. It requires understanding human tool use and allocating specific functions to each robotic finger for fine control. Existing work has primarily focused on the overall grasping capabilities of robotic hands, often neglecting the functional allocation among individual fingers during object interaction. In response to this, we introduce a semantic knowledge-driven approach to distribute functions among fingers for tool manipulation. Central to this approach is the finger-to-function (F2F) knowledge graph, which captures human expertise in tool use and establishes relationships between tool attributes, tasks, and manipulation elements, including functional fingers, components, required force, and gestures. We also develop a manipulation element-oriented prediction algorithm using knowledge graph semantic embedding, enhancing the prediction of manipulation elements’ speed and accuracy. Additionally, we propose the functionality-integrated adaptive force feedback manipulation (FAFM) module, which integrates manipulation elements with adaptive force feedback to achieve precise finger-level control. Our framework does not rely on extensive annotated data for supervision but utilizes semantic constraints from F2F to guide tool manipulation. The proposed method demonstrates superior performance and generalizability in real-world scenarios, achieving an 8% higher success rate in grasping and manipulation of representative tool instances compared to the existing state-of-the-art methods. The dataset and code are available at \n<uri>https://github.com/yangfan293/F2F</uri>\n.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 1","pages":"395-408"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10752517/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A primary challenge in robotic tool use is achieving precise manipulation with dexterous robotic hands to mimic human actions. It requires understanding human tool use and allocating specific functions to each robotic finger for fine control. Existing work has primarily focused on the overall grasping capabilities of robotic hands, often neglecting the functional allocation among individual fingers during object interaction. In response to this, we introduce a semantic knowledge-driven approach to distribute functions among fingers for tool manipulation. Central to this approach is the finger-to-function (F2F) knowledge graph, which captures human expertise in tool use and establishes relationships between tool attributes, tasks, and manipulation elements, including functional fingers, components, required force, and gestures. We also develop a manipulation element-oriented prediction algorithm using knowledge graph semantic embedding, enhancing the prediction of manipulation elements’ speed and accuracy. Additionally, we propose the functionality-integrated adaptive force feedback manipulation (FAFM) module, which integrates manipulation elements with adaptive force feedback to achieve precise finger-level control. Our framework does not rely on extensive annotated data for supervision but utilizes semantic constraints from F2F to guide tool manipulation. The proposed method demonstrates superior performance and generalizability in real-world scenarios, achieving an 8% higher success rate in grasping and manipulation of representative tool instances compared to the existing state-of-the-art methods. The dataset and code are available at https://github.com/yangfan293/F2F .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以任务为导向的机器人灵巧手工具操纵:从手指到功能的知识图谱方法
机器人工具使用的一个主要挑战是如何用灵巧的机器人手模拟人类的动作来实现精确的操作。它需要理解人类工具的使用,并为每个机器人手指分配特定的功能以进行精细控制。现有的工作主要集中在机械人手的整体抓取能力上,往往忽略了在物体交互过程中单个手指之间的功能分配。针对这一点,我们引入了一种语义知识驱动的方法来在手指之间分配功能以进行工具操作。该方法的核心是手指到功能(F2F)知识图,它捕获了人类在工具使用方面的专业知识,并建立了工具属性、任务和操作元素之间的关系,包括功能手指、组件、所需的力和手势。利用知识图语义嵌入,提出了面向操作元素的预测算法,提高了操作元素预测的速度和准确性。此外,我们提出了功能集成的自适应力反馈操作(FAFM)模块,该模块将操作元素与自适应力反馈集成在一起,以实现精确的手指级控制。我们的框架不依赖于大量带注释的数据进行监督,而是利用F2F的语义约束来指导工具操作。该方法在实际场景中表现出优异的性能和通用性,与现有的最先进方法相比,在抓取和操纵代表性工具实例方面的成功率提高了8%。数据集和代码可在https://github.com/yangfan293/F2F上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
期刊最新文献
Table of Contents IEEE Transactions on Cybernetics IEEE Transactions on Cybernetics IEEE SYSTEMS, MAN, AND CYBERNETICS SOCIETY Enhancing Resilience of Islanded Microgrids Under Disturbances, Delays, and DoS Attacks Through a Novel Digital Predictor Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1