{"title":"LHADRO: A Robust Control Framework for Autonomous Vehicles Under Cyber-Physical Attacks","authors":"Jiachen Yang;Jipeng Zhang","doi":"10.1109/TIFS.2024.3497808","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning has demonstrated remarkable performance in autonomous vehicle control. However, the increasing threat of cyber-physical attacks, which can alter sensor information or vehicle dynamics, poses significant challenges to the robustness of these control policies. To address this, we propose LHADRO (Lambda-History Aware Diversity Robust Oracle), a novel framework that models robust control as a two-player game between control policies and cyber-physical attacks. The key contributions of LHADRO are: (1) A lambda-history aware mechanism that balances past and present meta-policies to enhance training efficiency and mitigates meta-policy thrashing, and (2) A joint diversity introduction mechanism that improves robust control performance by increasing population disparity through a regularization term in parameter updates. We validate the proposed method in MetaDrive-based environments. Experiment results verify that the LHADRO framework improves the robust control performance, and the effectiveness of some critical factors is investigated and discussed.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"87-100"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10752542/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep reinforcement learning has demonstrated remarkable performance in autonomous vehicle control. However, the increasing threat of cyber-physical attacks, which can alter sensor information or vehicle dynamics, poses significant challenges to the robustness of these control policies. To address this, we propose LHADRO (Lambda-History Aware Diversity Robust Oracle), a novel framework that models robust control as a two-player game between control policies and cyber-physical attacks. The key contributions of LHADRO are: (1) A lambda-history aware mechanism that balances past and present meta-policies to enhance training efficiency and mitigates meta-policy thrashing, and (2) A joint diversity introduction mechanism that improves robust control performance by increasing population disparity through a regularization term in parameter updates. We validate the proposed method in MetaDrive-based environments. Experiment results verify that the LHADRO framework improves the robust control performance, and the effectiveness of some critical factors is investigated and discussed.
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features