Predicting biophysical properties of small molecules from chromatographic measurements and the solvation parameter model

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Chromatography A Pub Date : 2024-10-28 DOI:10.1016/j.chroma.2024.465461
Colin F. Poole , Sanka N. Atapattu
{"title":"Predicting biophysical properties of small molecules from chromatographic measurements and the solvation parameter model","authors":"Colin F. Poole ,&nbsp;Sanka N. Atapattu","doi":"10.1016/j.chroma.2024.465461","DOIUrl":null,"url":null,"abstract":"<div><div>Biopartitioning processes are challenging to study and often require the sacrifice of multiple animals. Therefore, it is more practical and cost-effective to correlate these processes with easily determined properties, such as chromatographic retention data, or to make predictions based on structural descriptors such as quantitative structure-property relationships or linear free energy relationships. Abraham's solvation parameter model uses six solute properties to characterize the interactions responsible for the transfer of neutral compounds between immiscible phases in chromatographic or biological systems. This review discusses the prediction of biological properties of small molecules from chromatographic measurements and the solvation parameter model. It covers the characteristics of solute descriptors in the solvation parameter model, as well as experimental approaches for their determination. Additionally, it explores recent applications of the solvation parameter model in characterizing biological systems and its use in identifying surrogate chromatographic models for predicting biological properties.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1738 ","pages":"Article 465461"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324008355","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Biopartitioning processes are challenging to study and often require the sacrifice of multiple animals. Therefore, it is more practical and cost-effective to correlate these processes with easily determined properties, such as chromatographic retention data, or to make predictions based on structural descriptors such as quantitative structure-property relationships or linear free energy relationships. Abraham's solvation parameter model uses six solute properties to characterize the interactions responsible for the transfer of neutral compounds between immiscible phases in chromatographic or biological systems. This review discusses the prediction of biological properties of small molecules from chromatographic measurements and the solvation parameter model. It covers the characteristics of solute descriptors in the solvation parameter model, as well as experimental approaches for their determination. Additionally, it explores recent applications of the solvation parameter model in characterizing biological systems and its use in identifying surrogate chromatographic models for predicting biological properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过色谱测量和溶解参数模型预测小分子的生物物理特性。
生物分离过程的研究具有挑战性,通常需要牺牲多只动物。因此,将这些过程与色谱保留数据等易于确定的属性相关联,或根据定量结构-属性关系或线性自由能关系等结构描述符进行预测,更为实用且更具成本效益。亚伯拉罕溶解参数模型使用六种溶质特性来描述色谱或生物系统中不相溶相之间中性化合物转移的相互作用。本综述讨论了通过色谱测量和溶解参数模型预测小分子的生物特性。内容包括溶解参数模型中溶质描述符的特点以及确定这些描述符的实验方法。此外,它还探讨了溶解参数模型在表征生物系统特性方面的最新应用,以及该模型在确定用于预测生物特性的替代色谱模型方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chromatography A
Journal of Chromatography A 化学-分析化学
CiteScore
7.90
自引率
14.60%
发文量
742
审稿时长
45 days
期刊介绍: The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.
期刊最新文献
Multi–class cyanobacterial toxin analysis using hydrophilic interaction liquid chromatography–mass spectrometry In situ growth of hierarchical porous covalent organic framework coating for enhanced solid-phase microextraction of phenolic compounds Understanding the fundamentals of the on-off retention mechanism of oligonucleotides and their application to high throughput analysis Optimizing conditions in online RPLC × SFC for the analysis of complex samples containing neutral compounds: Solving injection issues. Designing boron-doped carbon dot-functionalized COFs for fluorescence screening and liquid chromatography tandem mass spectrometry detection of toxins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1