Meng Zhang , Xuetao Cheng , Xiaoman Yao , Jianyi Chu , Fenghua Bai , Chenghua Sun , Yan-Qin Wang
{"title":"Iron and nickel based alloy nanoparticles anchored on phosphorus-modified carbon-nitrogen plane enhances electrochemical nitrate reduction to ammonia","authors":"Meng Zhang , Xuetao Cheng , Xiaoman Yao , Jianyi Chu , Fenghua Bai , Chenghua Sun , Yan-Qin Wang","doi":"10.1016/j.jcis.2024.11.026","DOIUrl":null,"url":null,"abstract":"<div><div>The catalysts of iron and nickel nanoparticles anchored on carbon–nitrogen plane (FeNi-CN) are considered as the potential candidates for promising electrochemical nitrate reduction to ammonia (ENO<sub>3</sub>RR). However, the high d-orbital energy levels of iron and nickel sites coordinated with nitrogen atoms often lead to overly strong adsorption of reaction intermediates on active sites, severely limiting the improvement of catalytic performance. Herein, a catalyst FeNi<sub>3</sub>@P-NC consisting FeNi<sub>3</sub> alloy nanoparticles confined in phosphorus (P)-modified carbon–nitrogen plane is successfully fabricated, where the electron withdrawal effect induced by P on the carbon–nitrogen plane decreases the d-orbital energy, and optimizes the d-band center of FeNi alloy, thus weakening the overly strong adsorption of intermediates at the metal-N sites and thereby improving NO<sub>3</sub>RR activity. The prepared FeNi<sub>3</sub>@P-NC catalyst exhibits exceptional NO<sub>3</sub>RR performance with a 93 ± 4.5 % Faradaic efficiency of NH<sub>3</sub> production (FE<sub>NH3</sub>) and a high NH<sub>3</sub> yield rate (Y<sub>NH3</sub>) of 9633 ± 227.3 μg h<sup>−1</sup> cm<sup>−2</sup> at −0.7 V versus Reversible Hydrogen Electrode (vs. RHE) under alkaline medium. Importantly, FeNi<sub>3</sub>@P-NC also demonstrates superior catalytic stability and durability, which maintains stability over twenty-five successive electrochemical cycles and for 50 h of continuous electrolysis at 100 mA cm<sup>−2</sup>.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 632-642"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025839","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The catalysts of iron and nickel nanoparticles anchored on carbon–nitrogen plane (FeNi-CN) are considered as the potential candidates for promising electrochemical nitrate reduction to ammonia (ENO3RR). However, the high d-orbital energy levels of iron and nickel sites coordinated with nitrogen atoms often lead to overly strong adsorption of reaction intermediates on active sites, severely limiting the improvement of catalytic performance. Herein, a catalyst FeNi3@P-NC consisting FeNi3 alloy nanoparticles confined in phosphorus (P)-modified carbon–nitrogen plane is successfully fabricated, where the electron withdrawal effect induced by P on the carbon–nitrogen plane decreases the d-orbital energy, and optimizes the d-band center of FeNi alloy, thus weakening the overly strong adsorption of intermediates at the metal-N sites and thereby improving NO3RR activity. The prepared FeNi3@P-NC catalyst exhibits exceptional NO3RR performance with a 93 ± 4.5 % Faradaic efficiency of NH3 production (FENH3) and a high NH3 yield rate (YNH3) of 9633 ± 227.3 μg h−1 cm−2 at −0.7 V versus Reversible Hydrogen Electrode (vs. RHE) under alkaline medium. Importantly, FeNi3@P-NC also demonstrates superior catalytic stability and durability, which maintains stability over twenty-five successive electrochemical cycles and for 50 h of continuous electrolysis at 100 mA cm−2.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies