{"title":"Controlling Metal-Support Interactions to Engineer Highly Active and Stable Catalysts for CO<sub>x</sub> Hydrogenation.","authors":"Shilong Chen","doi":"10.1002/cssc.202401437","DOIUrl":null,"url":null,"abstract":"<p><p>This perspective focuses on the modulation of metal-support interaction (MSI) in catalysts for CO<sub>x</sub> hydrogenation, highlighting their profound impact on catalytic performance. Firstly, it outlines different strategies, including the use of highly reducible oxides and moderate reduction treatments, which induce the classical strong metal-support interaction (SMSI) effect and the electronic metal-support interaction (EMSI) effect. Morphology engineering and crystalline phase manipulation of oxides presented as effective methods to control EMSI are also discussed. The discrimination of SMSI and EMSI can be achieved using oxides with low encapsulation tendencies, such as ZrO<sub>2</sub>, which supports electronic modifications without or minimizing the overgrowth issues, optimizing the catalytic performance for methanation. Then, the synergy between Cu and ZnO in methanol synthesis, enhanced by SMSI, is emphasized inside. Optimizing support oxides to control oxygen vacancies enhances the catalytic performance of CO<sub>2</sub> hydrogenation to methanol. Perspectives for the future research on the fundamental understanding of structure-MSI-performance relationship for catalyst design is discussed.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401437"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401437","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This perspective focuses on the modulation of metal-support interaction (MSI) in catalysts for COx hydrogenation, highlighting their profound impact on catalytic performance. Firstly, it outlines different strategies, including the use of highly reducible oxides and moderate reduction treatments, which induce the classical strong metal-support interaction (SMSI) effect and the electronic metal-support interaction (EMSI) effect. Morphology engineering and crystalline phase manipulation of oxides presented as effective methods to control EMSI are also discussed. The discrimination of SMSI and EMSI can be achieved using oxides with low encapsulation tendencies, such as ZrO2, which supports electronic modifications without or minimizing the overgrowth issues, optimizing the catalytic performance for methanation. Then, the synergy between Cu and ZnO in methanol synthesis, enhanced by SMSI, is emphasized inside. Optimizing support oxides to control oxygen vacancies enhances the catalytic performance of CO2 hydrogenation to methanol. Perspectives for the future research on the fundamental understanding of structure-MSI-performance relationship for catalyst design is discussed.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology