Rudy J Castellani, Pouya Jamshidi, Germán Plascencia-Villa, George Perry
{"title":"The Amyloid Cascade Hypothesis: A Conclusion in Search of Support.","authors":"Rudy J Castellani, Pouya Jamshidi, Germán Plascencia-Villa, George Perry","doi":"10.1016/j.ajpath.2024.10.014","DOIUrl":null,"url":null,"abstract":"<p><p>The amyloid cascade hypothesis as the etiological underpinning of Alzheimer's disease (AD) is supported by a large body of literature, the most influential of which are genetic studies of the 1980's and 1990's. Other evidence includes the neuropathology of Down syndrome, apparent toxicity of oligomeric amyloid-β (Aβ), interactions with apolipoprotein E (APOE), and the analogy of cardiac amyloidosis. On the other hand, there is considerable phenotypic heterogeneity among the rare familial AD kindreds, which tempers extrapolation to sporadic AD. Oligomer biology is still in the theoretical realm, with no clinical validation. APOE support for the amyloid cascade and other inferences from the literature are somewhat circular in their logic. Analogy with amyloidoses might also consider secondary amyloidosis, driven by systemic inflammation and treated by treating the underlying etiology. Much of the remaining literature supporting the amyloid cascade is dominated by hypothesis-generating studies. Importantly, we now have a developing evidence base from controlled clinical trials that can potentially inform the issue of Aβ as a cause or driver of disease in sporadic AD. Emerging data provide clear evidence of target engagement. Clinical outcome, however, has been either marginally positive or similar to placebo. Assuming these findings hold, it appears that Aβ neither drives nor mitigates the disease process.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2024.10.014","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The amyloid cascade hypothesis as the etiological underpinning of Alzheimer's disease (AD) is supported by a large body of literature, the most influential of which are genetic studies of the 1980's and 1990's. Other evidence includes the neuropathology of Down syndrome, apparent toxicity of oligomeric amyloid-β (Aβ), interactions with apolipoprotein E (APOE), and the analogy of cardiac amyloidosis. On the other hand, there is considerable phenotypic heterogeneity among the rare familial AD kindreds, which tempers extrapolation to sporadic AD. Oligomer biology is still in the theoretical realm, with no clinical validation. APOE support for the amyloid cascade and other inferences from the literature are somewhat circular in their logic. Analogy with amyloidoses might also consider secondary amyloidosis, driven by systemic inflammation and treated by treating the underlying etiology. Much of the remaining literature supporting the amyloid cascade is dominated by hypothesis-generating studies. Importantly, we now have a developing evidence base from controlled clinical trials that can potentially inform the issue of Aβ as a cause or driver of disease in sporadic AD. Emerging data provide clear evidence of target engagement. Clinical outcome, however, has been either marginally positive or similar to placebo. Assuming these findings hold, it appears that Aβ neither drives nor mitigates the disease process.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.