Zouxi Du, Xiaoning Liu, Jiayu Li, Hang Min, Yuhu Ma, Wenting Hua, Leyuan Zhang, Yue Zhang, Mengmeng Shang, Hui Chen, Hong Yin, Limin Tian
{"title":"Development and external validation of a machine learning model to predict diabetic nephropathy in T1DM patients in the real-world.","authors":"Zouxi Du, Xiaoning Liu, Jiayu Li, Hang Min, Yuhu Ma, Wenting Hua, Leyuan Zhang, Yue Zhang, Mengmeng Shang, Hui Chen, Hong Yin, Limin Tian","doi":"10.1007/s00592-024-02404-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Studies on machine learning (ML) for the prediction of diabetic nephropathy (DN) in type 1 diabetes mellitus (T1DM) patients are rare. This study focused on the development and external validation of an explainable ML model to predict the risk of DN among individuals with T1DM.</p><p><strong>Methods: </strong>This was a retrospective, multicenter study conducted across 19 hospitals in Gansu Province, China (No: 2022-473). In total, 1368 patients were eligible for analysis among 1633 collected T1DM patients from January 2016 to December 2023. Recursive feature elimination using random forest and fivefold cross-validation was conducted to identify key features. Among the 12 initial ML algorithms, the optimal ML model was developed and validated externally in a distinct population, and its predictive outcomes were explained via the SHapley additive exPlanations method, which offered personalized decision insights.</p><p><strong>Results: </strong>Among the 1368 T1DM patients, 324 had DN. The extreme gradient boosting (XGBoost) model, which achieved optimal performance with an AUC of 83% (95% confidence interval [CI]: 76‒89), was selected to predict the risk of DN among T1DM patients. The DN predictive model included variables such as T1DM duration, postprandial glucose (PPG), systolic blood pressure (SBP), glycated hemoglobin (HbA1c), serum creatinine (Scr) and low-density lipoprotein cholesterol (LDL-C). External validation confirmed the reliability of the model, with an AUC of 76% (95% CI: 70‒82).</p><p><strong>Conclusions: </strong>The ML prediction tool has potential for advancing early and precise identification of the risk of DN among T1DM patients. Although successful external validation indicated that the developed model can provide a promising strategy for clinical adoption and help improve patient outcomes through timely and accurate risk assessment, additional prospective data and further validation in diverse populations are necessary.</p>","PeriodicalId":6921,"journal":{"name":"Acta Diabetologica","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Diabetologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00592-024-02404-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Studies on machine learning (ML) for the prediction of diabetic nephropathy (DN) in type 1 diabetes mellitus (T1DM) patients are rare. This study focused on the development and external validation of an explainable ML model to predict the risk of DN among individuals with T1DM.
Methods: This was a retrospective, multicenter study conducted across 19 hospitals in Gansu Province, China (No: 2022-473). In total, 1368 patients were eligible for analysis among 1633 collected T1DM patients from January 2016 to December 2023. Recursive feature elimination using random forest and fivefold cross-validation was conducted to identify key features. Among the 12 initial ML algorithms, the optimal ML model was developed and validated externally in a distinct population, and its predictive outcomes were explained via the SHapley additive exPlanations method, which offered personalized decision insights.
Results: Among the 1368 T1DM patients, 324 had DN. The extreme gradient boosting (XGBoost) model, which achieved optimal performance with an AUC of 83% (95% confidence interval [CI]: 76‒89), was selected to predict the risk of DN among T1DM patients. The DN predictive model included variables such as T1DM duration, postprandial glucose (PPG), systolic blood pressure (SBP), glycated hemoglobin (HbA1c), serum creatinine (Scr) and low-density lipoprotein cholesterol (LDL-C). External validation confirmed the reliability of the model, with an AUC of 76% (95% CI: 70‒82).
Conclusions: The ML prediction tool has potential for advancing early and precise identification of the risk of DN among T1DM patients. Although successful external validation indicated that the developed model can provide a promising strategy for clinical adoption and help improve patient outcomes through timely and accurate risk assessment, additional prospective data and further validation in diverse populations are necessary.
期刊介绍:
Acta Diabetologica is a journal that publishes reports of experimental and clinical research on diabetes mellitus and related metabolic diseases. Original contributions on biochemical, physiological, pathophysiological and clinical aspects of research on diabetes and metabolic diseases are welcome. Reports are published in the form of original articles, short communications and letters to the editor. Invited reviews and editorials are also published. A Methodology forum, which publishes contributions on methodological aspects of diabetes in vivo and in vitro, is also available. The Editor-in-chief will be pleased to consider articles describing new techniques (e.g., new transplantation methods, metabolic models), of innovative importance in the field of diabetes/metabolism. Finally, workshop reports are also welcome in Acta Diabetologica.