{"title":"Characterizing and Evaluating the Structures of Combined Pediatrics and Medical Genetics and Genomics Residency Programs.","authors":"Annie D Niehaus, David A Stevenson","doi":"10.1002/ajmg.a.63916","DOIUrl":null,"url":null,"abstract":"<p><p>There is limited information on rationale for the current training structure within combined Pediatrics-Medical Genetics and Genomics Residency (MGG) residency programs. This study addresses the benefits and drawbacks of different training structures. Program Directors (PDs) and Associate PDs of combined Pediatrics-MGG residency programs were surveyed to evaluate perceived benefits of different structures and the relative importance of particular pediatric rotations for combined training. Programs varied in terms of how many times a typical resident transitioned between Pediatrics and MGG during training (range 4 to > 9). PDs varied in their opinions of which training structure would be most ideal for training a future Clinical Geneticist within a combined Pediatrics-MGG program. However, the majority of PDs indicated that consecutive training (completing two years of Pediatrics, followed by MGG) would support particular aims of training including continuity of patient care and research productivity. The top six out of twenty pediatric rotations that were ranked as most important in order of importance were neonatal intensive care, development and behavior pediatrics, term newborn, pediatric intensive care, neurology, and inpatient pediatric wards. Particular structures may facilitate distinct aims within training; however, there was not widespread consensus on which program structure would be best. Specific pediatric rotations were highlighted as very important, which could influence future curriculum development.</p>","PeriodicalId":7507,"journal":{"name":"American Journal of Medical Genetics Part A","volume":" ","pages":"e63916"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Medical Genetics Part A","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajmg.a.63916","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
There is limited information on rationale for the current training structure within combined Pediatrics-Medical Genetics and Genomics Residency (MGG) residency programs. This study addresses the benefits and drawbacks of different training structures. Program Directors (PDs) and Associate PDs of combined Pediatrics-MGG residency programs were surveyed to evaluate perceived benefits of different structures and the relative importance of particular pediatric rotations for combined training. Programs varied in terms of how many times a typical resident transitioned between Pediatrics and MGG during training (range 4 to > 9). PDs varied in their opinions of which training structure would be most ideal for training a future Clinical Geneticist within a combined Pediatrics-MGG program. However, the majority of PDs indicated that consecutive training (completing two years of Pediatrics, followed by MGG) would support particular aims of training including continuity of patient care and research productivity. The top six out of twenty pediatric rotations that were ranked as most important in order of importance were neonatal intensive care, development and behavior pediatrics, term newborn, pediatric intensive care, neurology, and inpatient pediatric wards. Particular structures may facilitate distinct aims within training; however, there was not widespread consensus on which program structure would be best. Specific pediatric rotations were highlighted as very important, which could influence future curriculum development.
期刊介绍:
The American Journal of Medical Genetics - Part A (AJMG) gives you continuous coverage of all biological and medical aspects of genetic disorders and birth defects, as well as in-depth documentation of phenotype analysis within the current context of genotype/phenotype correlations. In addition to Part A , AJMG also publishes two other parts:
Part B: Neuropsychiatric Genetics , covering experimental and clinical investigations of the genetic mechanisms underlying neurologic and psychiatric disorders.
Part C: Seminars in Medical Genetics , guest-edited collections of thematic reviews of topical interest to the readership of AJMG .