{"title":"Different metal-doped NiO nanoparticles for sunlight-mediated degradation of low-density polyethylene microplastic films.","authors":"Jameel Mohammed Musthafa, Badal Kumar Mandal","doi":"10.1007/s43630-024-00653-z","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the widespread use and incorrect handling of plastics, we need to find a practical and effective way to eliminate plastic waste from the environment. Different metal-doped nickel oxide (DMD-NiO) nanoparticles (NPs) were synthesized using a sol-gel technique and were used to degrade low-density polyethylene (LDPE) microplastic (MP) films when exposed to sunlight. The optical and structural properties of sol-gel method synthesized materials were investigated using a variety of characterization methods (Fourier transform infrared (FT-IR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray diffractometer (XRD) analysis, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, and thermogravimetric analysis (TGA). Degradation study results suggest that the photocatalytic activity of DMD-NiO-LDPE nanocomposites (NCs) films was greater than that of pure LDPE and undoped NiO-LDPE films. Because of their increased optical absorption and efficient suppression of photo-produced charge carriers' recombination, the DMD-NiO NPs showed higher photocatalytic degradation of LDPE films. Thus, LDPE films with 2% wt Fe-NiO (iron-doped nickel oxide) nanomaterials showed a degradation of around 38.16% among DMD-NiO-LDPE NCs films under visible light over a short period of 30 days (240 h). The formation of carbonyl groups in the degradation product of LDPE was confirmed by Fourier transform infrared (FT-IR) analysis. When compared to the original LDPE film, the Fe-NiO-LDPE NCs films showed a significant decrease in crystallinity and carbonyl indexes, as much as 8.4% lower. The current project proposes the development of eco-friendly photocatalysts using a sol-gel technique for combating MP pollution in the environment.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"2091-2105"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-024-00653-z","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the widespread use and incorrect handling of plastics, we need to find a practical and effective way to eliminate plastic waste from the environment. Different metal-doped nickel oxide (DMD-NiO) nanoparticles (NPs) were synthesized using a sol-gel technique and were used to degrade low-density polyethylene (LDPE) microplastic (MP) films when exposed to sunlight. The optical and structural properties of sol-gel method synthesized materials were investigated using a variety of characterization methods (Fourier transform infrared (FT-IR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray diffractometer (XRD) analysis, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, and thermogravimetric analysis (TGA). Degradation study results suggest that the photocatalytic activity of DMD-NiO-LDPE nanocomposites (NCs) films was greater than that of pure LDPE and undoped NiO-LDPE films. Because of their increased optical absorption and efficient suppression of photo-produced charge carriers' recombination, the DMD-NiO NPs showed higher photocatalytic degradation of LDPE films. Thus, LDPE films with 2% wt Fe-NiO (iron-doped nickel oxide) nanomaterials showed a degradation of around 38.16% among DMD-NiO-LDPE NCs films under visible light over a short period of 30 days (240 h). The formation of carbonyl groups in the degradation product of LDPE was confirmed by Fourier transform infrared (FT-IR) analysis. When compared to the original LDPE film, the Fe-NiO-LDPE NCs films showed a significant decrease in crystallinity and carbonyl indexes, as much as 8.4% lower. The current project proposes the development of eco-friendly photocatalysts using a sol-gel technique for combating MP pollution in the environment.