{"title":"Polymeric Ionic Liquid-Enabled In Situ Protection of Li Anodes for High-Performance Li-O2 Batteries.","authors":"Dan Li, Qian Chen, Rui Li, Yaolin Hou, Yulong Liu, Haiming Xie, Jia Liu, Jiefang Zhu","doi":"10.1002/cssc.202402102","DOIUrl":null,"url":null,"abstract":"<p><p>Redox mediators (RMs) have shown promise in enhancing Li-O2 battery cycling stability by reducing overpotential. However, their application is hindered by the shuttle effect, leading to RM loss and Li anode corrosion. Here, we introduce a polyionic liquid, poly (1-Butyl-3-vinylimidazolium bis(trifluoromethanesulfonylimine)) ([PBVIm]- TFSI) as an additive, showcasing a novel Li anode protection strategy for LiI-mediated Li-O2 batteries. [PBVIm]+ cations migrate to the Li anode, forming a protective cationic shield that promotes uniform Li+ deposition. The addition of [PBVIm]-TFSI enhances the cycling stability, achieving 105 cycles at 200 mA·g-1, compared to the cell with LiI which exhibited 38 cycles under the same conditions. Synchrotron X-ray tomography reveals the evolution of this protective layer, providing insights into its formation mechanism, in conjunction with XPS analysis. Our findings offer a new approach to Li anode protection in Li-O2 batteries, emphasizing the critical role of interfacial engineering for battery performance.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402102"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402102","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Redox mediators (RMs) have shown promise in enhancing Li-O2 battery cycling stability by reducing overpotential. However, their application is hindered by the shuttle effect, leading to RM loss and Li anode corrosion. Here, we introduce a polyionic liquid, poly (1-Butyl-3-vinylimidazolium bis(trifluoromethanesulfonylimine)) ([PBVIm]- TFSI) as an additive, showcasing a novel Li anode protection strategy for LiI-mediated Li-O2 batteries. [PBVIm]+ cations migrate to the Li anode, forming a protective cationic shield that promotes uniform Li+ deposition. The addition of [PBVIm]-TFSI enhances the cycling stability, achieving 105 cycles at 200 mA·g-1, compared to the cell with LiI which exhibited 38 cycles under the same conditions. Synchrotron X-ray tomography reveals the evolution of this protective layer, providing insights into its formation mechanism, in conjunction with XPS analysis. Our findings offer a new approach to Li anode protection in Li-O2 batteries, emphasizing the critical role of interfacial engineering for battery performance.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology