Catching the π-Stacks: Prediction of Aggregate Structures of Porphyrin.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2024-11-09 DOI:10.1021/acs.jpca.4c05969
Anna Elmanova, Burkhard O Jahn, Martin Presselt
{"title":"Catching the π-Stacks: Prediction of Aggregate Structures of Porphyrin.","authors":"Anna Elmanova, Burkhard O Jahn, Martin Presselt","doi":"10.1021/acs.jpca.4c05969","DOIUrl":null,"url":null,"abstract":"<p><p>π-π interactions decisively shape the supramolecular structure and functionality of π-conjugated molecular semiconductor materials. Despite the customizable molecular building blocks, predicting their supramolecular structure remains a challenge. Traditionally, force field methods have been used due to the complexity of these structures, but advances in computational power have enabled ab initio approaches such as density functional theory (DFT). DFT is particularly suitable for finding energetically favorable structures of dye aggregates, which are determined by a large number of different interactions, but a systematic aggregate search can still be very challenging due to the large number of possible geometries. In this work, we show ways to overcome this challenge. We investigate how finely translational and rotational lattices must be structured to identify all energetic minima of π-stack structures, focusing on porphyrins as a prototype challenge. Our approach involves single-point DFT calculations of systematically varied dimer geometries, identification of local energy minima, hierarchical grouping of geometrically similar structures, and optimization of the energetically favorable representatives of each geometric family. This ab initio method provides a general framework for the systematic prediction of aggregate structures and reveals geometrically diverse and energetically favorable dimers.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c05969","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

π-π interactions decisively shape the supramolecular structure and functionality of π-conjugated molecular semiconductor materials. Despite the customizable molecular building blocks, predicting their supramolecular structure remains a challenge. Traditionally, force field methods have been used due to the complexity of these structures, but advances in computational power have enabled ab initio approaches such as density functional theory (DFT). DFT is particularly suitable for finding energetically favorable structures of dye aggregates, which are determined by a large number of different interactions, but a systematic aggregate search can still be very challenging due to the large number of possible geometries. In this work, we show ways to overcome this challenge. We investigate how finely translational and rotational lattices must be structured to identify all energetic minima of π-stack structures, focusing on porphyrins as a prototype challenge. Our approach involves single-point DFT calculations of systematically varied dimer geometries, identification of local energy minima, hierarchical grouping of geometrically similar structures, and optimization of the energetically favorable representatives of each geometric family. This ab initio method provides a general framework for the systematic prediction of aggregate structures and reveals geometrically diverse and energetically favorable dimers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
捕捉π-叠层:预测卟啉的聚集结构。
π-π相互作用决定了π-共轭分子半导体材料的超分子结构和功能。尽管分子构件可以定制,但预测其超分子结构仍然是一项挑战。由于这些结构的复杂性,传统上一直使用力场方法,但计算能力的进步使得密度泛函理论(DFT)等非初始方法成为可能。密度泛函理论特别适用于寻找染料聚集体的有利能量结构,这些结构是由大量不同的相互作用决定的,但由于可能的几何形状数量众多,系统的聚集体搜索仍然非常具有挑战性。在这项工作中,我们展示了克服这一挑战的方法。我们以卟啉为挑战原型,研究了平移和旋转晶格必须如何构造才能识别π叠层结构的所有能量极小值。我们的方法包括对系统变化的二聚体几何结构进行单点 DFT 计算、识别局部能量最小值、对几何结构相似的结构进行分层分组,以及优化每个几何族中能量有利的代表。这种 ab initio 方法为系统预测聚合体结构提供了一个通用框架,并揭示了几何上多样且能量上有利的二聚体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Application of UHPLC-ESI-MS/MS to Identify Free Radicals via Spin Trapping with BMPO. Cu(II) Stability and UV-Induced Electron Transfer in a Metal-Organic Hybrid: An EPR, DFT, and Crystallographic Characterization of Copper-Doped Zinc Creatininium Sulfate. Exploring the Theoretical Kinetic Analysis of Halogen Monoxide (XO, X = Cl, Br, I) Reactivity with Isoprene across Diverse Temperatures. Heavy Atom at Bay of Perylene Significantly Improves Intersystem Crossing. Local Exchange Integrand: Looking into Quantum Contributions to Chemical Bonds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1