Transition Path Dynamics of Non-Markovian Systems across a Rough Potential Barrier.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2024-11-11 DOI:10.1021/acs.jpca.4c05036
Pankaj Jangid, Srabanti Chaudhury
{"title":"Transition Path Dynamics of Non-Markovian Systems across a Rough Potential Barrier.","authors":"Pankaj Jangid, Srabanti Chaudhury","doi":"10.1021/acs.jpca.4c05036","DOIUrl":null,"url":null,"abstract":"<p><p>Transition paths refer to rare events in physics, chemistry, and biology where the molecules cross barriers separating stable molecular conformations. The conventional analysis of the transition path times employs a diffusive and memoryless transition over a smooth potential barrier. However, it is widely acknowledged that the free energy profile between two minima in biomolecular processes is inherently not smooth. In this article, we discuss a theoretical model with a parabolic rough potential barrier and obtain analytical results of the transition path distribution and mean transition path times by incorporating absorbing boundary conditions across the boundaries under the driving of Gaussian white noise. Further, the influence of anomalous dynamics in rough potential driven by a power-law memory kernel is analyzed by deriving a time-dependent scaled diffusion coefficient that coarse-grains the effects of roughness, and the system's dynamics is reduced to a scaled diffusion on a smooth potential. Our theoretical results are tested and validated against numerical simulations. The findings of our study show the influence of the boundary conditions, barrier height, barrier roughness, and memory effect on the transition path time distributions in a rough potential, and the validity of the scaling diffusion coefficient has been discussed.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c05036","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transition paths refer to rare events in physics, chemistry, and biology where the molecules cross barriers separating stable molecular conformations. The conventional analysis of the transition path times employs a diffusive and memoryless transition over a smooth potential barrier. However, it is widely acknowledged that the free energy profile between two minima in biomolecular processes is inherently not smooth. In this article, we discuss a theoretical model with a parabolic rough potential barrier and obtain analytical results of the transition path distribution and mean transition path times by incorporating absorbing boundary conditions across the boundaries under the driving of Gaussian white noise. Further, the influence of anomalous dynamics in rough potential driven by a power-law memory kernel is analyzed by deriving a time-dependent scaled diffusion coefficient that coarse-grains the effects of roughness, and the system's dynamics is reduced to a scaled diffusion on a smooth potential. Our theoretical results are tested and validated against numerical simulations. The findings of our study show the influence of the boundary conditions, barrier height, barrier roughness, and memory effect on the transition path time distributions in a rough potential, and the validity of the scaling diffusion coefficient has been discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非马尔可夫系统跨越粗糙势垒的过渡路径动力学
过渡路径指的是物理、化学和生物学中的罕见事件,即分子跨越分隔稳定分子构象的障碍。传统的过渡路径时间分析采用的是光滑势垒上的无记忆扩散过渡。然而,人们普遍认为,生物分子过程中两个最小值之间的自由能曲线本身并不平滑。在本文中,我们讨论了抛物线粗糙势垒的理论模型,并在高斯白噪声的驱动下,通过跨边界吸收边界条件,得到了过渡路径分布和平均过渡路径时间的分析结果。此外,我们还分析了由幂律记忆核驱动的粗糙势中异常动力学的影响,推导出了粗粒化粗糙度影响的随时间变化的标度扩散系数,并将系统动力学简化为光滑势上的标度扩散。我们的理论结果通过数值模拟进行了测试和验证。我们的研究结果表明了边界条件、势垒高度、势垒粗糙度和记忆效应对粗糙势中过渡路径时间分布的影响,并讨论了缩放扩散系数的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Application of UHPLC-ESI-MS/MS to Identify Free Radicals via Spin Trapping with BMPO. Cu(II) Stability and UV-Induced Electron Transfer in a Metal-Organic Hybrid: An EPR, DFT, and Crystallographic Characterization of Copper-Doped Zinc Creatininium Sulfate. Exploring the Theoretical Kinetic Analysis of Halogen Monoxide (XO, X = Cl, Br, I) Reactivity with Isoprene across Diverse Temperatures. Heavy Atom at Bay of Perylene Significantly Improves Intersystem Crossing. Local Exchange Integrand: Looking into Quantum Contributions to Chemical Bonds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1