Paweł Wójcik, Hanna Reisler, Péter G Szalay, Anna I Krylov, John F Stanton
{"title":"Vibronic Coupling Effects in the Photoelectron Spectrum of Ozone: A Coupled-Cluster Approach.","authors":"Paweł Wójcik, Hanna Reisler, Péter G Szalay, Anna I Krylov, John F Stanton","doi":"10.1021/acs.jpca.4c05973","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most important areas of application for equation-of-motion coupled-cluster (EOM-CC) theory is the prediction, simulation, and analysis of various types of electronic spectra. In this work, the EOM-CC method for ionized states, known as EOM-IP-CC, is applied to the closely lying and coupled pair of states of the ozone cation─<i>X̃</i><sup>2</sup><i>A</i><sub>1</sub> and <i>Ã</i><sup>2</sup><i>B</i><sub>2</sub>─using highly accurate treatments including up to the full single, double, triple, and quadruple excitations (EOM-IP-CCSDTQ). Combined with a venerable and powerful method for calculating vibronic spectra from the Hamiltonian produced by EOM-IP-CC calculations, the simulations yield a spectrum that is in good agreement with the photoelectron spectrum of ozone. Importantly, the calculations suggest that the adiabatic gap separating these two electronic states is somewhat smaller than currently thought; an assignment of the simulated spectrum together with more precise band positions of the experimental measurements suggests <i>T</i><sub>00</sub> = 1,368 ± 65 cm<sup>-1</sup>.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c05973","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most important areas of application for equation-of-motion coupled-cluster (EOM-CC) theory is the prediction, simulation, and analysis of various types of electronic spectra. In this work, the EOM-CC method for ionized states, known as EOM-IP-CC, is applied to the closely lying and coupled pair of states of the ozone cation─X̃2A1 and Ã2B2─using highly accurate treatments including up to the full single, double, triple, and quadruple excitations (EOM-IP-CCSDTQ). Combined with a venerable and powerful method for calculating vibronic spectra from the Hamiltonian produced by EOM-IP-CC calculations, the simulations yield a spectrum that is in good agreement with the photoelectron spectrum of ozone. Importantly, the calculations suggest that the adiabatic gap separating these two electronic states is somewhat smaller than currently thought; an assignment of the simulated spectrum together with more precise band positions of the experimental measurements suggests T00 = 1,368 ± 65 cm-1.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.