Che Shen, Ran Wang, Hira Nawazish, Bo Wang, Kezhou Cai, Baocai Xu
{"title":"Machine vision combined with deep learning–based approaches for food authentication: An integrative review and new insights","authors":"Che Shen, Ran Wang, Hira Nawazish, Bo Wang, Kezhou Cai, Baocai Xu","doi":"10.1111/1541-4337.70054","DOIUrl":null,"url":null,"abstract":"<p>Food fraud undermines consumer trust, creates economic risk, and jeopardizes human health. Therefore, it is essential to develop efficient technologies for rapid and reliable analysis of food quality and safety for food authentication. Machine vision–based methods have emerged as promising solutions for the rapid and nondestructive analysis of food authenticity and quality. The Industry 4.0 revolution has introduced new trends in this field, including the use of deep learning (DL), a subset of artificial intelligence, which demonstrates robust performance and generalization capabilities, effectively extracting features, and processing extensive data. This paper reviews recent advances in machine vision and various DL-based algorithms for food authentication, including DL and lightweight DL, used for food authenticity analysis such as adulteration identification, variety identification, freshness detection, and food quality identification by combining them with a machine vision system or with smartphones and portable devices. This review explores the limitations of machine vision and the challenges of DL, which include overfitting, interpretability, accessibility, data privacy, algorithmic bias, and design and deployment of lightweight DLs, and miniaturization of sensing devices. Finally, future developments and trends in this field are discussed, including the development of real-time detection systems that incorporate a combination of machine vision and DL methods and the expansion of databases. Overall, the combination of vision-based techniques and DL is expected to enable faster, more affordable, and more accurate food authentication methods.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":null,"pages":null},"PeriodicalIF":12.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70054","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Food fraud undermines consumer trust, creates economic risk, and jeopardizes human health. Therefore, it is essential to develop efficient technologies for rapid and reliable analysis of food quality and safety for food authentication. Machine vision–based methods have emerged as promising solutions for the rapid and nondestructive analysis of food authenticity and quality. The Industry 4.0 revolution has introduced new trends in this field, including the use of deep learning (DL), a subset of artificial intelligence, which demonstrates robust performance and generalization capabilities, effectively extracting features, and processing extensive data. This paper reviews recent advances in machine vision and various DL-based algorithms for food authentication, including DL and lightweight DL, used for food authenticity analysis such as adulteration identification, variety identification, freshness detection, and food quality identification by combining them with a machine vision system or with smartphones and portable devices. This review explores the limitations of machine vision and the challenges of DL, which include overfitting, interpretability, accessibility, data privacy, algorithmic bias, and design and deployment of lightweight DLs, and miniaturization of sensing devices. Finally, future developments and trends in this field are discussed, including the development of real-time detection systems that incorporate a combination of machine vision and DL methods and the expansion of databases. Overall, the combination of vision-based techniques and DL is expected to enable faster, more affordable, and more accurate food authentication methods.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.