A Photoelectric Synergistic Flexible Solid Slippery Surface for All-Day Anti-Icing/Frosting.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2025-01-01 Epub Date: 2024-11-13 DOI:10.1002/smtd.202400859
Ziyuan Chai, Ziyi Teng, Pu Guo, Yueran He, Di Zhao, Xiaobiao Zuo, Kesong Liu, Lei Jiang, Liping Heng
{"title":"A Photoelectric Synergistic Flexible Solid Slippery Surface for All-Day Anti-Icing/Frosting.","authors":"Ziyuan Chai, Ziyi Teng, Pu Guo, Yueran He, Di Zhao, Xiaobiao Zuo, Kesong Liu, Lei Jiang, Liping Heng","doi":"10.1002/smtd.202400859","DOIUrl":null,"url":null,"abstract":"<p><p>The accumulation of ice on surface has caused great harm to lots of fields such as transportation or aerospace. Nowadays, various equipment or tools used in low-temperature environments, which face the risk of interface icing, usually have irregular shapes. Traditional rigid anti-icing materials are difficult to meet practical application requirements. Thus, it is crucial to develop flexible anti-icing materials that can be applied to various shape surfaces (curved surfaces, flat surfaces). In this paper, a photoelectric synergistic flexible solid slippery surface (FSSS) is prepared by using flexible basalt fiberglass cloth, flexible copper foil, flexible polyurethane/carbon nanotubes mixture, and flexible solid lubricant (the mixture of coconut wax and coconut oil). Even under harsh conditions of the temperature as low as -80 °C, the FSSS exhibits excellent all-day anti/de-icing performance whether on flat or curved surface. Moreover, the FSSS shows long-term stability both on flat and curved surface: situated in air for 60 days, submerged in water for 60 days, kept in acid environment (pH 1) and base environment (pH 13) for 30 days. Besides, the FSSS can also achieve self-healing function under -80 °C. This flexible surface provides a novel approach for de-icing/frosting of multi-shaped objects in the future.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400859"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400859","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The accumulation of ice on surface has caused great harm to lots of fields such as transportation or aerospace. Nowadays, various equipment or tools used in low-temperature environments, which face the risk of interface icing, usually have irregular shapes. Traditional rigid anti-icing materials are difficult to meet practical application requirements. Thus, it is crucial to develop flexible anti-icing materials that can be applied to various shape surfaces (curved surfaces, flat surfaces). In this paper, a photoelectric synergistic flexible solid slippery surface (FSSS) is prepared by using flexible basalt fiberglass cloth, flexible copper foil, flexible polyurethane/carbon nanotubes mixture, and flexible solid lubricant (the mixture of coconut wax and coconut oil). Even under harsh conditions of the temperature as low as -80 °C, the FSSS exhibits excellent all-day anti/de-icing performance whether on flat or curved surface. Moreover, the FSSS shows long-term stability both on flat and curved surface: situated in air for 60 days, submerged in water for 60 days, kept in acid environment (pH 1) and base environment (pH 13) for 30 days. Besides, the FSSS can also achieve self-healing function under -80 °C. This flexible surface provides a novel approach for de-icing/frosting of multi-shaped objects in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于全天候防结冰/霜冻的光电协同柔性固体防滑表面。
表面积冰给交通或航空航天等众多领域带来了巨大危害。如今,在低温环境中使用的各种设备或工具都面临着界面结冰的风险,它们通常具有不规则的形状。传统的刚性防冰材料难以满足实际应用要求。因此,开发可应用于各种形状表面(曲面、平面)的柔性防冰材料至关重要。本文利用柔性玄武岩玻璃纤维布、柔性铜箔、柔性聚氨酯/碳纳米管混合物和柔性固体润滑剂(椰蜡和椰油的混合物)制备了一种光电协同柔性固体防滑表面(FSSS)。即使在温度低至零下 80 ℃ 的恶劣条件下,FSSS 也能在平面或曲面上表现出出色的全天候防冰/除冰性能。此外,无论是在平面还是曲面上,FSSS 都具有长期稳定性:在空气中放置 60 天,在水中浸泡 60 天,在酸性环境(pH 值为 1)和碱性环境(pH 值为 13)中保存 30 天。此外,FSSS 还能在 -80 °C 下实现自愈功能。这种柔性表面为未来多形状物体的除冰/除霜提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Diatomite-Based Hybrid Electrolyte for Improving Reversibility of Cathode/Anode Interface Reaction in Zn-MnO2 Batteries. Electrosynthesis of Ru (II)-Polypyridyl Oligomeric Films on ITO Electrode for Two Terminal Non-Volatile Memory Devices and Neuromorphic Computing. DNA Nanostructures-Based In Situ Cancer Vaccines: Mechanisms and Applications. Bacteria Flagella-Mimicking Polymer Multilayer Magnetic Microrobots. Circular Single-Stranded DNA-Based Artificial Nanoviruses Mitigate Colorectal Cancer Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1