{"title":"Strategy for Enhancing Catalytic Active Site: Introduction of 1D material InSeI for Electrochemical CO<sub>2</sub> Reduction to Formate.","authors":"Jiho Jeon, Hyeon-Seok Bang, Young-Jin Ko, Jinsu Kang, Xiaojie Zhang, Cheoulwoo Oh, Hyunchul Kim, Kyung Hwan Choi, Chaeheon Woo, Xue Dong, Woong Hee Lee, Hak Ki Yu, Jae-Young Choi, Hyung-Suk Oh","doi":"10.1002/smtd.202401157","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of oxygen vacancies (V<sub>o</sub>) in electrocatalysts plays a significant role in improving the selectivity and activity of CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). In this study, 1D material with large surface area is utilized to enable uniform V<sub>o</sub> formation on the catalyst. 1D structured indium selenoiodide (InSeI) is synthesized and used as an electrocatalyst for the conversion of CO<sub>2</sub> to formate. The electrochemical treatment of InSeI leads to the leaching of Se and I from the catalyst surface and the formation of V<sub>o</sub>. The resulting V<sub>o</sub> promotes the activity of the CO<sub>2</sub>RR, which increases the local pH of the catalyst surface and chemically maintains the oxidized metal sites on the catalyst. Owing to these characteristics, activated In wire exhibited remarkable CO<sub>2</sub>RR activity, thereby surpassing 93% FE<sub>formate</sub> at 500 mA cm<sup>-2</sup>, with a maximum of 97.3% FE<sub>formate</sub> at 100 mA cm<sup>-2</sup>. Moreover, the catalytic activity remained consistent for over 50 h at 100 mA cm<sup>-2</sup> (FE<sub>formate</sub> >88%). Thus, the findings imply that using 1D materials can facilitate the formation of oxygen vacancies on the catalyst surface and improve the selectivity and durability of CO<sub>2</sub>RR. This indicates the potential for further research on 1D materials as electrocatalysts.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401157"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401157","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of oxygen vacancies (Vo) in electrocatalysts plays a significant role in improving the selectivity and activity of CO2 reduction reaction (CO2RR). In this study, 1D material with large surface area is utilized to enable uniform Vo formation on the catalyst. 1D structured indium selenoiodide (InSeI) is synthesized and used as an electrocatalyst for the conversion of CO2 to formate. The electrochemical treatment of InSeI leads to the leaching of Se and I from the catalyst surface and the formation of Vo. The resulting Vo promotes the activity of the CO2RR, which increases the local pH of the catalyst surface and chemically maintains the oxidized metal sites on the catalyst. Owing to these characteristics, activated In wire exhibited remarkable CO2RR activity, thereby surpassing 93% FEformate at 500 mA cm-2, with a maximum of 97.3% FEformate at 100 mA cm-2. Moreover, the catalytic activity remained consistent for over 50 h at 100 mA cm-2 (FEformate >88%). Thus, the findings imply that using 1D materials can facilitate the formation of oxygen vacancies on the catalyst surface and improve the selectivity and durability of CO2RR. This indicates the potential for further research on 1D materials as electrocatalysts.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.