Patellofemoral Joint Contact Area Quantified In Vivo During Daily Activities.

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Annals of Biomedical Engineering Pub Date : 2024-11-11 DOI:10.1007/s10439-024-03641-7
Shanyuanye Guan, Marcus G Pandy
{"title":"Patellofemoral Joint Contact Area Quantified In Vivo During Daily Activities.","authors":"Shanyuanye Guan, Marcus G Pandy","doi":"10.1007/s10439-024-03641-7","DOIUrl":null,"url":null,"abstract":"<p><p>In vivo measurements of patellofemoral joint contact area are scarce. Patellofemoral contact area has been measured in living people under static conditions with the knee held at fixed angles between 0 and 60° of flexion. No previous study to our knowledge has measured patellofemoral contact area in vivo during dynamic activity. The aim of this study was to measure and compare patellofemoral joint contact area in healthy people across a range of daily activities. Mobile biplane X-ray imaging was used to measure 3D tibiofemoral and patellofemoral kinematics in level walking, downhill walking, stair ascent, stair descent, and open-chain (non-weightbearing) knee flexion and knee extension. The kinematic data were combined with magnetic resonance imaging to determine patellofemoral joint contact area at each time point during each activity. The knee flexion angle explained, respectively, 83%, 80%, and 72% of the variability in the total, lateral, and medial patellofemoral contact areas measured across all participants and all activities. Total, lateral, and medial patellofemoral contact areas increased from 0 to 60° of knee flexion and then decreased as the flexion angle increased further, up to ~ 120°. Patellofemoral contact area was less sensitive to the type of activity and hence joint load. The lateral patellofemoral contact area was larger than the medial patellofemoral contact area throughout the range of knee flexion in all activities (p < 0.001). Knowledge of patellofemoral contact area during daily activities like walking improves our understanding of patellofemoral joint biomechanics and will assist in validating computational models of the patellofemoral joint.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03641-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In vivo measurements of patellofemoral joint contact area are scarce. Patellofemoral contact area has been measured in living people under static conditions with the knee held at fixed angles between 0 and 60° of flexion. No previous study to our knowledge has measured patellofemoral contact area in vivo during dynamic activity. The aim of this study was to measure and compare patellofemoral joint contact area in healthy people across a range of daily activities. Mobile biplane X-ray imaging was used to measure 3D tibiofemoral and patellofemoral kinematics in level walking, downhill walking, stair ascent, stair descent, and open-chain (non-weightbearing) knee flexion and knee extension. The kinematic data were combined with magnetic resonance imaging to determine patellofemoral joint contact area at each time point during each activity. The knee flexion angle explained, respectively, 83%, 80%, and 72% of the variability in the total, lateral, and medial patellofemoral contact areas measured across all participants and all activities. Total, lateral, and medial patellofemoral contact areas increased from 0 to 60° of knee flexion and then decreased as the flexion angle increased further, up to ~ 120°. Patellofemoral contact area was less sensitive to the type of activity and hence joint load. The lateral patellofemoral contact area was larger than the medial patellofemoral contact area throughout the range of knee flexion in all activities (p < 0.001). Knowledge of patellofemoral contact area during daily activities like walking improves our understanding of patellofemoral joint biomechanics and will assist in validating computational models of the patellofemoral joint.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
日常活动中的髌股关节活体接触面积定量。
有关髌股关节接触面积的活体测量数据很少。髌骨与股关节的接触面积是在静态条件下对活人进行测量的,当时膝关节保持在 0 至 60° 的固定屈曲角度。据我们所知,之前没有任何研究测量过动态活动时的髌股关节接触面积。本研究旨在测量和比较健康人在一系列日常活动中的髌股关节接触面积。该研究使用移动双平面 X 射线成像技术,测量平地行走、下坡行走、上楼梯、下楼梯以及开链(非负重)膝关节屈伸时胫股关节和髌股关节的三维运动学特性。运动学数据与磁共振成像相结合,确定了每项活动中每个时间点的髌股关节接触面积。在所有参与者和所有活动中测得的髌股关节总接触面积、外侧接触面积和内侧接触面积的变化中,膝关节屈曲角度的解释率分别为 83%、80% 和 72%。膝关节屈曲 0 至 60°时,髌骨总接触面积、外侧接触面积和内侧接触面积均有所增加,然后随着屈曲角度的进一步增加而减少,直至 120°。髌骨接触面积对活动类型和关节负荷的敏感度较低。在所有活动的膝关节屈曲范围内,髌骨外侧接触面积均大于髌骨内侧接触面积(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
期刊最新文献
Statistical Shape Modeling to Determine Poromechanics of the Human Knee Joint. Clinical Validation of Non-invasive Simulation-Based Determination of Vascular Impedance, Wave Intensity, and Hydraulic Work in Patients Undergoing Transcatheter Aortic Valve Replacement. Correction: The Effect of Low-Dose CT Protocols on Shoulder Model-Based Tracking accuracy Using Biplane Videoradiography. Thoracic Responses and Injuries of Male Post-Mortem Human Subjects in a Homogeneous Rear-Facing Seat During High-Speed Frontal Impact. CFD Two-Phase Blood Model Predicting the Hematocrit Heterogeneity Inside Fiber Bundles of Blood Oxygenators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1