Sonja Sivcev , Stephanie Constantin , Kosara Smiljanic , Srdjan J. Sokanovic , Patrick A. Fletcher , Arthur S. Sherman , Hana Zemkova , Stanko S. Stojilkovic
{"title":"Distribution and calcium signaling function of somatostatin receptor subtypes in rat pituitary","authors":"Sonja Sivcev , Stephanie Constantin , Kosara Smiljanic , Srdjan J. Sokanovic , Patrick A. Fletcher , Arthur S. Sherman , Hana Zemkova , Stanko S. Stojilkovic","doi":"10.1016/j.ceca.2024.102967","DOIUrl":null,"url":null,"abstract":"<div><div>The somatostatin (SST) receptor family controls pituitary hormone secretion, but the distribution and specific roles of these receptors on the excitability and voltage-gated calcium signaling of hormone producing pituitary cells have not been fully characterized. Here we show that the rat pituitary gland expressed <em>Sstr1, Sstr2, Sstr3,</em> and <em>Sstr5</em> receptor genes in a cell type-specific manner: <em>Sstr1</em> and <em>Sstr2</em> in thyrotrophs, <em>Sstr3</em> in gonadotrophs and lactotrophs, <em>Sstr2, Sstr3</em>, and <em>Sstr5</em> in somatotrophs, and none in corticotrophs and melanotrophs. Most gonadotrophs and thyrotrophs spontaneously fired high-amplitude single action potentials, which were silenced by SST without affecting intracellular calcium concentrations. In contrast, lactotrophs and somatotrophs spontaneously fired low-amplitude plateau-bursting action potentials in conjunction with calcium transients, both of which were silenced by SST. Moreover, SST inhibited GPCR-induced voltage-gated calcium signaling and hormone secretion in all cell types expressing SST receptors, but the inhibition was more pronounced in somatotrophs. The pattern of inhibition of electrical activity and calcium signaling was consistent with both direct and indirect inhibition of voltage-gated calcium channels, the latter being driven by cell type-specific hyperpolarization. These results indicate that the action of SST in somatotrophs is enhanced by the expression of several types of SST receptors and their slow desensitization, that SST may play a role in the electrical resynchronization of gonadotrophs, thyrotrophs, and lactotrophs, and that the lack of SST receptors in corticotrophs and melanotrophs keeps them excitable and ready to responses to stress.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"124 ","pages":"Article 102967"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416024001258","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The somatostatin (SST) receptor family controls pituitary hormone secretion, but the distribution and specific roles of these receptors on the excitability and voltage-gated calcium signaling of hormone producing pituitary cells have not been fully characterized. Here we show that the rat pituitary gland expressed Sstr1, Sstr2, Sstr3, and Sstr5 receptor genes in a cell type-specific manner: Sstr1 and Sstr2 in thyrotrophs, Sstr3 in gonadotrophs and lactotrophs, Sstr2, Sstr3, and Sstr5 in somatotrophs, and none in corticotrophs and melanotrophs. Most gonadotrophs and thyrotrophs spontaneously fired high-amplitude single action potentials, which were silenced by SST without affecting intracellular calcium concentrations. In contrast, lactotrophs and somatotrophs spontaneously fired low-amplitude plateau-bursting action potentials in conjunction with calcium transients, both of which were silenced by SST. Moreover, SST inhibited GPCR-induced voltage-gated calcium signaling and hormone secretion in all cell types expressing SST receptors, but the inhibition was more pronounced in somatotrophs. The pattern of inhibition of electrical activity and calcium signaling was consistent with both direct and indirect inhibition of voltage-gated calcium channels, the latter being driven by cell type-specific hyperpolarization. These results indicate that the action of SST in somatotrophs is enhanced by the expression of several types of SST receptors and their slow desensitization, that SST may play a role in the electrical resynchronization of gonadotrophs, thyrotrophs, and lactotrophs, and that the lack of SST receptors in corticotrophs and melanotrophs keeps them excitable and ready to responses to stress.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes