Machine Learning Assessment of Background Parenchymal Enhancement in Breast Cancer and Clinical Applications: A Literature Review.

IF 4.5 2区 医学 Q1 ONCOLOGY Cancers Pub Date : 2024-10-31 DOI:10.3390/cancers16213681
Katie S Duong, Rhianna Rubner, Adam Siegel, Richard Adam, Richard Ha, Takouhie Maldjian
{"title":"Machine Learning Assessment of Background Parenchymal Enhancement in Breast Cancer and Clinical Applications: A Literature Review.","authors":"Katie S Duong, Rhianna Rubner, Adam Siegel, Richard Adam, Richard Ha, Takouhie Maldjian","doi":"10.3390/cancers16213681","DOIUrl":null,"url":null,"abstract":"<p><p>Background Parenchymal Enhancement (BPE) on breast MRI holds promise as an imaging biomarker for breast cancer risk and prognosis. The ability to identify those at greatest risk can inform clinical decisions, promoting early diagnosis and potentially guiding strategies for prevention such as risk-reduction interventions with the use of selective estrogen receptor modulators and aromatase inhibitors. Currently, the standard method of assessing BPE is based on the Breast Imaging-Reporting and Data System (BI-RADS), which involves a radiologist's qualitative categorization of BPE as minimal, mild, moderate, or marked on contrast-enhanced MRI. This approach can be subjective and prone to inter/intra-observer variability, and compromises accuracy and reproducibility. In addition, this approach limits qualitative assessment to 4 categories. More recently developed methods using machine learning/artificial intelligence (ML/AI) techniques have the potential to quantify BPE more accurately and objectively. This paper will review the current machine learning/AI methods to determine BPE, and the clinical applications of BPE as an imaging biomarker for breast cancer risk prediction and prognosis.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"16 21","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers16213681","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background Parenchymal Enhancement (BPE) on breast MRI holds promise as an imaging biomarker for breast cancer risk and prognosis. The ability to identify those at greatest risk can inform clinical decisions, promoting early diagnosis and potentially guiding strategies for prevention such as risk-reduction interventions with the use of selective estrogen receptor modulators and aromatase inhibitors. Currently, the standard method of assessing BPE is based on the Breast Imaging-Reporting and Data System (BI-RADS), which involves a radiologist's qualitative categorization of BPE as minimal, mild, moderate, or marked on contrast-enhanced MRI. This approach can be subjective and prone to inter/intra-observer variability, and compromises accuracy and reproducibility. In addition, this approach limits qualitative assessment to 4 categories. More recently developed methods using machine learning/artificial intelligence (ML/AI) techniques have the potential to quantify BPE more accurately and objectively. This paper will review the current machine learning/AI methods to determine BPE, and the clinical applications of BPE as an imaging biomarker for breast cancer risk prediction and prognosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳腺癌背景实质增强的机器学习评估及临床应用:文献综述
背景 乳腺核磁共振成像(MRI)上的实质增强(BPE)有望成为乳腺癌风险和预后的成像生物标志物。识别高危人群的能力可为临床决策提供依据,促进早期诊断,并有可能指导预防策略,如使用选择性雌激素受体调节剂和芳香化酶抑制剂进行风险降低干预。目前,评估 BPE 的标准方法是基于乳腺成像报告和数据系统 (BI-RADS),即由放射科医生在对比增强 MRI 上将 BPE 定性分为极小、轻度、中度或明显。这种方法可能比较主观,容易造成观察者之间/观察者内部的差异,影响准确性和可重复性。此外,这种方法将定性评估限制在 4 个类别。最近开发的使用机器学习/人工智能(ML/AI)技术的方法有可能更准确、更客观地量化 BPE。本文将综述目前确定 BPE 的机器学习/人工智能方法,以及 BPE 作为乳腺癌风险预测和预后的成像生物标志物的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancers
Cancers Medicine-Oncology
CiteScore
8.00
自引率
9.60%
发文量
5371
审稿时长
18.07 days
期刊介绍: Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Untreated Vestibular Schwannoma: Analysis of the Determinants of Growth. ZNF281 Facilitates the Invasion of Cervical Cancer Cell Both In Vivo and In Vitro . Whole Exome-Wide Association Identifies Rare Variants in APC Associated with High-Risk Colorectal Cancer in the Middle East. Primitive Resectable Small Bowel Cancer Clinical-Pathological Analysis: A 10-Year Retrospective Study in a General Surgery Unit. Progress in Precision Medicine for Head and Neck Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1