Jin Sug Kim, Geon Woo Kim, Hyeon Seok Hwang, Yang Gyun Kim, Ju-Young Moon, Sang Ho Lee, Junhee Seok, Donghyun Tae, Kyung Hwan Jeong
{"title":"Urinary sediment mRNA as a potent biomarker of IgA nephropathy.","authors":"Jin Sug Kim, Geon Woo Kim, Hyeon Seok Hwang, Yang Gyun Kim, Ju-Young Moon, Sang Ho Lee, Junhee Seok, Donghyun Tae, Kyung Hwan Jeong","doi":"10.1186/s12882-024-03696-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The quantification of mRNA expression in urinary sediments is a reliable biomarker for various diseases. However, few studies have investigated the clinical relevance of urinary mRNA levels in IgA nephropathy (IgAN). Thus, we investigated the expression of urinary mRNAs and their clinical significance in IgAN.</p><p><strong>Methods: </strong>Overall, 200 patients with biopsy-proven IgAN, 48 disease controls, and 76 healthy controls were enrolled. We identified the differential expression of mRNAs in renal tissue between patients with IgAN and normal subjects using the Gene Expression Omnibus dataset and selected candidate mRNAs. mRNA expression in the urinary sediment was measured using quantitative real-time polymerase chain reaction. Associations between urinary mRNA levels and clinicopathological parameters were analyzed and the predictive value of mRNAs for disease progression was evaluated.</p><p><strong>Results: </strong>The urinary expression of CCL2, CD14, DNMT1, FKBP5, Nephrin, and IL-6 was significantly upregulated in patients with IgAN compared with healthy controls. C3, FLOT1, and Podocin levels were significantly correlated with renal function, where C3, FLOT1, and TfR levels were significantly correlated with urinary protein excretion. During follow-up, 26 (13.0%) patients with IgAN experienced disease progression, defined as a greater than 50% reduction in the estimated glomerular filtration rate or progression to end-stage renal disease. Urinary mRNA levels of FLOT1 (HR 3.706, 95% CI 1.373-10.005, P = 0.010) were independently associated with an increased risk of disease progression.</p><p><strong>Conclusions: </strong>Our results suggest that urinary sediment mRNAs are a useful biomarker in IgAN patients. Further studies with larger sample sizes and longer follow-up durations are required.</p>","PeriodicalId":9089,"journal":{"name":"BMC Nephrology","volume":"25 1","pages":"401"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12882-024-03696-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The quantification of mRNA expression in urinary sediments is a reliable biomarker for various diseases. However, few studies have investigated the clinical relevance of urinary mRNA levels in IgA nephropathy (IgAN). Thus, we investigated the expression of urinary mRNAs and their clinical significance in IgAN.
Methods: Overall, 200 patients with biopsy-proven IgAN, 48 disease controls, and 76 healthy controls were enrolled. We identified the differential expression of mRNAs in renal tissue between patients with IgAN and normal subjects using the Gene Expression Omnibus dataset and selected candidate mRNAs. mRNA expression in the urinary sediment was measured using quantitative real-time polymerase chain reaction. Associations between urinary mRNA levels and clinicopathological parameters were analyzed and the predictive value of mRNAs for disease progression was evaluated.
Results: The urinary expression of CCL2, CD14, DNMT1, FKBP5, Nephrin, and IL-6 was significantly upregulated in patients with IgAN compared with healthy controls. C3, FLOT1, and Podocin levels were significantly correlated with renal function, where C3, FLOT1, and TfR levels were significantly correlated with urinary protein excretion. During follow-up, 26 (13.0%) patients with IgAN experienced disease progression, defined as a greater than 50% reduction in the estimated glomerular filtration rate or progression to end-stage renal disease. Urinary mRNA levels of FLOT1 (HR 3.706, 95% CI 1.373-10.005, P = 0.010) were independently associated with an increased risk of disease progression.
Conclusions: Our results suggest that urinary sediment mRNAs are a useful biomarker in IgAN patients. Further studies with larger sample sizes and longer follow-up durations are required.
期刊介绍:
BMC Nephrology is an open access journal publishing original peer-reviewed research articles in all aspects of the prevention, diagnosis and management of kidney and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology.