Chrna2-driven CRE Is Expressed in Beige Adipocytes.

IF 3.8 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Endocrinology Pub Date : 2024-11-26 DOI:10.1210/endocr/bqae153
Kezhou Zhu, Shanshan Liu, Yunying Huang, Biyang Zhang, Nadia Houssein, Jun Wu
{"title":"Chrna2-driven CRE Is Expressed in Beige Adipocytes.","authors":"Kezhou Zhu, Shanshan Liu, Yunying Huang, Biyang Zhang, Nadia Houssein, Jun Wu","doi":"10.1210/endocr/bqae153","DOIUrl":null,"url":null,"abstract":"<p><p>Significant research interest has been focused on beige adipocytes, the activation of which improves glucose and lipid homeostasis, therefore representing new therapeutic opportunities for metabolic diseases. Various Cre/Lox-based strategies have been used to investigate the developmental history of beige adipocytes and how these cells adapt to environmental changes. Despite the significant advancement of our understanding of beige adipocyte biology, much of the molecular insights of the beige adipocyte, including its origin and cell type-specific function, remain to be further illustrated. It has previously been shown that Chrna2 (cholinergic receptor nicotinic alpha 2 subunit) has selective functionality in beige adipocytes. In this study, we explore the Chrna2-Cre-driven reporter expression in mouse beige adipocytes in vivo and in vitro. Our findings indicate that Chrna2-Cre expression is present selectively in multiple locular beige adipocytes in subcutaneous inguinal white adipose tissue (iWAT) and differentiated stromal vascular fraction from iWAT. Chrna2-Cre expression was detected in iWAT of young pups and mice after cold exposure where a significant number of beige adipocytes are present. Chrna2-Cre-driven reporter expression is permanent in iWAT postlabeling and can be detected in the iWAT of adult mice or mice that have been housed extensively at thermoneutrality after cold exposure, even though only \"inactive dormant\" beige adipocytes are present in these mice. Chrna2-Cre expression can also be increased by rosiglitazone treatment and β-adrenergic activation. This research, therefore, introduces the Chrna2-Cre line as a valuable tool for tracking the development of beige adipocytes and investigating beige fat function.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630559/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae153","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Significant research interest has been focused on beige adipocytes, the activation of which improves glucose and lipid homeostasis, therefore representing new therapeutic opportunities for metabolic diseases. Various Cre/Lox-based strategies have been used to investigate the developmental history of beige adipocytes and how these cells adapt to environmental changes. Despite the significant advancement of our understanding of beige adipocyte biology, much of the molecular insights of the beige adipocyte, including its origin and cell type-specific function, remain to be further illustrated. It has previously been shown that Chrna2 (cholinergic receptor nicotinic alpha 2 subunit) has selective functionality in beige adipocytes. In this study, we explore the Chrna2-Cre-driven reporter expression in mouse beige adipocytes in vivo and in vitro. Our findings indicate that Chrna2-Cre expression is present selectively in multiple locular beige adipocytes in subcutaneous inguinal white adipose tissue (iWAT) and differentiated stromal vascular fraction from iWAT. Chrna2-Cre expression was detected in iWAT of young pups and mice after cold exposure where a significant number of beige adipocytes are present. Chrna2-Cre-driven reporter expression is permanent in iWAT postlabeling and can be detected in the iWAT of adult mice or mice that have been housed extensively at thermoneutrality after cold exposure, even though only "inactive dormant" beige adipocytes are present in these mice. Chrna2-Cre expression can also be increased by rosiglitazone treatment and β-adrenergic activation. This research, therefore, introduces the Chrna2-Cre line as a valuable tool for tracking the development of beige adipocytes and investigating beige fat function.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chrna2 驱动的 CRE 在米色脂肪细胞中表达。
研究兴趣主要集中在米色脂肪细胞上,激活这些细胞可以改善葡萄糖和脂质的平衡,从而为代谢性疾病带来新的治疗机会。各种基于 Cre/Lox 的策略已被用于研究米色脂肪细胞的发育历史以及这些细胞如何适应环境变化。尽管我们对米色脂肪细胞生物学的理解有了很大的进步,但对米色脂肪细胞的许多分子认识,包括其起源、细胞类型的特定功能,仍有待进一步说明。之前有研究表明,Chrna2(胆碱能受体烟碱α2亚基)在米色脂肪细胞中具有选择性功能。在本研究中,我们探讨了 Chrna2-Cre 驱动的报告基因在小鼠米色脂肪细胞中的体内和体外表达。我们的研究结果表明,Chrna2-Cre 的表达选择性地存在于皮下腹股沟白色脂肪组织(iWAT)中的多个定位米色脂肪细胞和来自 iWAT 的分化基质血管部分。在幼崽的 iWAT 中检测到了 Chrna2-Cre 的表达,小鼠在冷暴露后会出现大量米色脂肪细胞。Chrna2-Cre 驱动的报告基因表达在标记后的 iWAT 中是永久性的,并且可以在成年小鼠的 iWAT 中检测到,或在小鼠暴露于寒冷环境后大量饲养在恒温条件下的 iWAT 中检测到,即使这些小鼠体内只存在 "非活性休眠 "的米色脂肪细胞。罗格列酮治疗和β肾上腺素能激活也会增加Chrna2-Cre的表达。因此,这项研究将 Chrna2-Cre 株系引入了追踪米色脂肪细胞发育和研究米色脂肪功能的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Endocrinology
Endocrinology 医学-内分泌学与代谢
CiteScore
8.10
自引率
4.20%
发文量
195
审稿时长
2-3 weeks
期刊介绍: The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.
期刊最新文献
Environmental enrichment normalizes metabolic function in the murine model of Prader-Willi syndrome Magel2-null mice. Identification of βIIΣ1-spectrin as a binding partner of the GH-regulated human obesity scaffold protein SH2B1. Transcriptional Cofactors for Thyroid Hormone Receptors. GLP-1 and Its Analogs: Does Sex Matter? Hormonal Actions in the Medial Preoptic Area Governing Parental Behavior: Novel Insights From New Tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1