Yunfa Ding , Anxia Deng , Hao Yu , Hongbing Zhang , Tengfei Qi , Jipei He , Chenjun He , Hou Jie , Zihao Wang , Liangpin Wu
{"title":"Integrative multi-omics analysis of Crohn's disease and metabolic syndrome: Unveiling the underlying molecular mechanisms of comorbidity","authors":"Yunfa Ding , Anxia Deng , Hao Yu , Hongbing Zhang , Tengfei Qi , Jipei He , Chenjun He , Hou Jie , Zihao Wang , Liangpin Wu","doi":"10.1016/j.compbiomed.2024.109365","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>The focus of this study is on identifying a potential association between Crohn's disease (CD), a chronic inflammatory bowel condition, and metabolic syndrome (Mets), characterized by a cluster of metabolic abnormalities, including high blood pressure, abnormal lipid levels, and overweight. While the link between CD and MetS has been suggested in the medical community, the underlying molecular mechanisms remain largely unexplored.</div></div><div><h3>Methods</h3><div>Using microarray data from the Gene Expression Omnibus (GEO) database, we conducted a differential gene expression analysis and applied Weighted Gene Co-expression Network Analysis (WGCNA) to identify genes shared between CD and MetS. To further elucidate the functions of these shared genes, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and constructed protein-protein interaction (PPI) networks. For key gene screening, we used Random Forest and Least Absolute Shrinkage and Selection Operator (LASSO) regression and constructed a diagnostic prediction model with the Extreme Gradient Boosting (XGBoost) algorithm. Additionally, CIBERSORT and Gene Set Variation Analysis (GSVA) were employed to examine the relationships between these genes and immune cell infiltration, as well as metabolic pathways. Mendelian randomization and colocalization analyses were also conducted to explore causal links between genes and disease. Lastly, single-cell RNA sequencing (scRNA-seq) was used to validate the functionality of these key genes.</div></div><div><h3>Results</h3><div>Through the use of the limma R package and WGCNA, we identified 1767 co-expressed genes common to both CD and MetS, which are notably enriched in pathways related to immune responses and metabolic regulation. After thorough analysis, 34 key genes were highlighted, demonstrating their potential utility in prognostic models. These genes were closely linked to tissue immune responses and metabolic functions. Subsequent scRNA-seq analysis confirmed the strong diagnostic potential of PIM2 and PBX2, with especially prominent expression in T and B cells.</div></div><div><h3>Conclusion</h3><div>This study identifies shared regulatory genes between CD and MetS, advancing the development of precise diagnostic tools. In particular, PIM2 and PBX2 were found to be positively associated with hypoxia and hemoglobin metabolism pathways, suggesting their involvement in the modulation of cellular processes. These findings improve our understanding of the molecular mechanisms underlying the comorbidity of CD and MetS, offering novel targets for integrated therapeutic interventions.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"Article 109365"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524014501","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
The focus of this study is on identifying a potential association between Crohn's disease (CD), a chronic inflammatory bowel condition, and metabolic syndrome (Mets), characterized by a cluster of metabolic abnormalities, including high blood pressure, abnormal lipid levels, and overweight. While the link between CD and MetS has been suggested in the medical community, the underlying molecular mechanisms remain largely unexplored.
Methods
Using microarray data from the Gene Expression Omnibus (GEO) database, we conducted a differential gene expression analysis and applied Weighted Gene Co-expression Network Analysis (WGCNA) to identify genes shared between CD and MetS. To further elucidate the functions of these shared genes, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and constructed protein-protein interaction (PPI) networks. For key gene screening, we used Random Forest and Least Absolute Shrinkage and Selection Operator (LASSO) regression and constructed a diagnostic prediction model with the Extreme Gradient Boosting (XGBoost) algorithm. Additionally, CIBERSORT and Gene Set Variation Analysis (GSVA) were employed to examine the relationships between these genes and immune cell infiltration, as well as metabolic pathways. Mendelian randomization and colocalization analyses were also conducted to explore causal links between genes and disease. Lastly, single-cell RNA sequencing (scRNA-seq) was used to validate the functionality of these key genes.
Results
Through the use of the limma R package and WGCNA, we identified 1767 co-expressed genes common to both CD and MetS, which are notably enriched in pathways related to immune responses and metabolic regulation. After thorough analysis, 34 key genes were highlighted, demonstrating their potential utility in prognostic models. These genes were closely linked to tissue immune responses and metabolic functions. Subsequent scRNA-seq analysis confirmed the strong diagnostic potential of PIM2 and PBX2, with especially prominent expression in T and B cells.
Conclusion
This study identifies shared regulatory genes between CD and MetS, advancing the development of precise diagnostic tools. In particular, PIM2 and PBX2 were found to be positively associated with hypoxia and hemoglobin metabolism pathways, suggesting their involvement in the modulation of cellular processes. These findings improve our understanding of the molecular mechanisms underlying the comorbidity of CD and MetS, offering novel targets for integrated therapeutic interventions.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.