Umar Mushtaq, Rais A Ganai, Muzamil Ahmad, Firdous Ahmad Khanday
{"title":"Amyloid beta-activated alpha-1-syntrophin has ramifications on Rac1 activation, ROS production and neuronal cell death.","authors":"Umar Mushtaq, Rais A Ganai, Muzamil Ahmad, Firdous Ahmad Khanday","doi":"10.1111/ejn.16609","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of β-amyloid (Aβ)-containing extracellular neuritic plaques and phosphorylated tau-containing intracellular neurofibrillary tangles. It remains the primary neuropathological criteria for the diagnosis of AD. Additionally, several other processes are currently being recognized as significant risk factors for AD development, including the brain's susceptibility to reactive oxygen species (ROS). The ROS production is among the early signs in the progression of AD. However, the underlying mechanisms behind increased ROS production in AD remain poorly understood. We have observed SNTA1 plays critical role in regulating ROS levels in different pathological conditions. Here, we wanted to gain further insight into the role of SNTA1 in the development of AD by using IMR32 cell line. Our results show that the accumulation of Aβ plaques in Alzheimer's model neuroblastoma cells significantly increases the expression and activation of SNTA1 and MKK6 kinase. The activation of MKK6 results in the phosphorylation of SNTA1, creating a binding site for Rac1, leading to its activation and subsequent production of ROS. Excessive ROS production leads to cell cycle arrest in the G2/M phase, a hallmark of AD. Our study provides new insight into the mechanism of Aβ-mediated cell death in AD and suggests that MKK6-mediated activation of alpha-1-syntrophin promotes ROS production in neuronal cells, resulting in cell death. This study presents a mechanistic insight into Aβ-mediated cell death and could serve as a paradigm for reducing neuronal cell death in AD.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ejn.16609","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of β-amyloid (Aβ)-containing extracellular neuritic plaques and phosphorylated tau-containing intracellular neurofibrillary tangles. It remains the primary neuropathological criteria for the diagnosis of AD. Additionally, several other processes are currently being recognized as significant risk factors for AD development, including the brain's susceptibility to reactive oxygen species (ROS). The ROS production is among the early signs in the progression of AD. However, the underlying mechanisms behind increased ROS production in AD remain poorly understood. We have observed SNTA1 plays critical role in regulating ROS levels in different pathological conditions. Here, we wanted to gain further insight into the role of SNTA1 in the development of AD by using IMR32 cell line. Our results show that the accumulation of Aβ plaques in Alzheimer's model neuroblastoma cells significantly increases the expression and activation of SNTA1 and MKK6 kinase. The activation of MKK6 results in the phosphorylation of SNTA1, creating a binding site for Rac1, leading to its activation and subsequent production of ROS. Excessive ROS production leads to cell cycle arrest in the G2/M phase, a hallmark of AD. Our study provides new insight into the mechanism of Aβ-mediated cell death in AD and suggests that MKK6-mediated activation of alpha-1-syntrophin promotes ROS production in neuronal cells, resulting in cell death. This study presents a mechanistic insight into Aβ-mediated cell death and could serve as a paradigm for reducing neuronal cell death in AD.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.