{"title":"Proteomic Alteration in Catalpol Treatment of Alzheimer's disease by regulating HSPA5/ GPX4.","authors":"Leiyu Tian, Hongwei Li, Wei Xiong, Xia Li, Shaobin Duan, Chengzhi Yang, Changhua Shi","doi":"10.1016/j.ejphar.2024.177075","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, is characterized by the deposition of extracellular amyloid plaques and intracellular neurofibrillary tangles. Conventional anti-AD drugs exhibit high toxicity and adversely impact patients' quality of life. Therefore, novel treatments for AD are urgently required. In recent years, targeting ferroptosis through the modulation of lipid oxidation has emerged as a new approach in the treatment of neurodegenerative diseases. Catalpol, an iridoid glycoside isolated from the roots of Rehmannia glutinosa, has exhibited anti-inflammatory, antioxidant, and neuroprotective properties. Therefore, in this study, we investigated the protective effects and associated underlying mechanisms of catalpol in an APP/PS1 AD mouse model. Catalpol treatment significantly improved the cognitive capabilities and decreased Aβ<sub>1-40</sub> and Aβ<sub>1-42</sub> levels in mice. Morphological testing revealed that catalpol prevented neuronal loss and reduced mitochondrial swelling in the hippocampal CA1 region. Proteomic studies identified 2,495 hippocampus proteins whose expression was associated with the mechanism of catalpol treatment, including 44 ferroptosis-related proteins. Bioinformatic analysis revealed that catalpol significantly increased the protein levels of HSPA5 and GPX4 in the hippocampus. Additionally, catalpol modulated biological pathways related to apoptosis, cytokine-mediated signaling, and ferroptosis. The considerable upregulation of HSPA5 and GPX4 with catalpol was further confirmed through western blotting. Catalpol exhibited neuroprotective effects through a variety of mechanisms. Among these, HSPA5 and GPX4, associated with ferroptosis, may play key roles in AD pathogenesis, and present promising therapeutic targets.</p>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":" ","pages":"177075"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejphar.2024.177075","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, is characterized by the deposition of extracellular amyloid plaques and intracellular neurofibrillary tangles. Conventional anti-AD drugs exhibit high toxicity and adversely impact patients' quality of life. Therefore, novel treatments for AD are urgently required. In recent years, targeting ferroptosis through the modulation of lipid oxidation has emerged as a new approach in the treatment of neurodegenerative diseases. Catalpol, an iridoid glycoside isolated from the roots of Rehmannia glutinosa, has exhibited anti-inflammatory, antioxidant, and neuroprotective properties. Therefore, in this study, we investigated the protective effects and associated underlying mechanisms of catalpol in an APP/PS1 AD mouse model. Catalpol treatment significantly improved the cognitive capabilities and decreased Aβ1-40 and Aβ1-42 levels in mice. Morphological testing revealed that catalpol prevented neuronal loss and reduced mitochondrial swelling in the hippocampal CA1 region. Proteomic studies identified 2,495 hippocampus proteins whose expression was associated with the mechanism of catalpol treatment, including 44 ferroptosis-related proteins. Bioinformatic analysis revealed that catalpol significantly increased the protein levels of HSPA5 and GPX4 in the hippocampus. Additionally, catalpol modulated biological pathways related to apoptosis, cytokine-mediated signaling, and ferroptosis. The considerable upregulation of HSPA5 and GPX4 with catalpol was further confirmed through western blotting. Catalpol exhibited neuroprotective effects through a variety of mechanisms. Among these, HSPA5 and GPX4, associated with ferroptosis, may play key roles in AD pathogenesis, and present promising therapeutic targets.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.