Wenqiang Quan, Yann Decker, Qinghua Luo, Axel Chemla, Hsin-Fang Chang, Dong Li, Klaus Fassbender, Yang Liu
{"title":"Deficiency of NLRP3 protects cerebral pericytes and attenuates Alzheimer's pathology in tau-transgenic mice.","authors":"Wenqiang Quan, Yann Decker, Qinghua Luo, Axel Chemla, Hsin-Fang Chang, Dong Li, Klaus Fassbender, Yang Liu","doi":"10.3389/fncel.2024.1471005","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Activation of NLRP3-containing inflammasome, which is responsible for IL-1β maturation, has been shown to contribute to Alzheimer's disease (AD)-associated pathogenesis in both APP- and tau-transgenic mice. However, effects of NLRP3 on pericytes and subsequent cerebrovascular pathology in AD remain unknown.</p><p><strong>Methods: </strong>NLRP3-deficient and wild-type AD animal models were generated by crossing human P301S tau-transgenic mice and <i>Nlrp3</i> knockout mice. AD-associated neuroinflammation, tauopathy, vasculature and pericyte coverage in the brain were investigated using immunohistological and molecular biological methods. To investigate how NLRP3 regulates pericyte activation and survival, pericytes from the brains of <i>Nlrp3</i> knockout and wild-type mice were cultured, treated with IL-1β and H<sub>2</sub>O<sub>2</sub> at different concentrations and analyzed by confocal microscopy and flow cytometry after staining with fluorescently labelled phalloidin, annexin-V and PDGFRβ antibody.</p><p><strong>Results: </strong>Deficiency of NLRP3 (1) reduced Iba-1, GFAP and AT8 antibody-immunoreactive phosphorylated tau-positive cells, without significantly altering transcription of inflammatory genes, (2) preserved cerebral vasculature and pericyte coverage and up-regulated <i>Osteopontin</i> gene transcription, and (3) improved cognitive function in tau-transgenic mice. In cell culture, NLRP3 deficiency prevented pericyte apoptosis. Treatment with IL-1β or H<sub>2</sub>O<sub>2</sub> increased the expression of PDGFRβ in NLRP3-deficient pericytes, but decreased it in NLRP3 wild-type pericytes in a dose-dependent manner.</p><p><strong>Discussion: </strong>Inhibition of NLRP3 can promote pericyte survival, improve cerebrovascular function, and attenuate AD pathology in the brain of tau-transgenic mice. Our study supports NLRP3 as a novel therapeutic target for Alzheimer's patients.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"18 ","pages":"1471005"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558252/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncel.2024.1471005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Activation of NLRP3-containing inflammasome, which is responsible for IL-1β maturation, has been shown to contribute to Alzheimer's disease (AD)-associated pathogenesis in both APP- and tau-transgenic mice. However, effects of NLRP3 on pericytes and subsequent cerebrovascular pathology in AD remain unknown.
Methods: NLRP3-deficient and wild-type AD animal models were generated by crossing human P301S tau-transgenic mice and Nlrp3 knockout mice. AD-associated neuroinflammation, tauopathy, vasculature and pericyte coverage in the brain were investigated using immunohistological and molecular biological methods. To investigate how NLRP3 regulates pericyte activation and survival, pericytes from the brains of Nlrp3 knockout and wild-type mice were cultured, treated with IL-1β and H2O2 at different concentrations and analyzed by confocal microscopy and flow cytometry after staining with fluorescently labelled phalloidin, annexin-V and PDGFRβ antibody.
Results: Deficiency of NLRP3 (1) reduced Iba-1, GFAP and AT8 antibody-immunoreactive phosphorylated tau-positive cells, without significantly altering transcription of inflammatory genes, (2) preserved cerebral vasculature and pericyte coverage and up-regulated Osteopontin gene transcription, and (3) improved cognitive function in tau-transgenic mice. In cell culture, NLRP3 deficiency prevented pericyte apoptosis. Treatment with IL-1β or H2O2 increased the expression of PDGFRβ in NLRP3-deficient pericytes, but decreased it in NLRP3 wild-type pericytes in a dose-dependent manner.
Discussion: Inhibition of NLRP3 can promote pericyte survival, improve cerebrovascular function, and attenuate AD pathology in the brain of tau-transgenic mice. Our study supports NLRP3 as a novel therapeutic target for Alzheimer's patients.
期刊介绍:
Frontiers in Cellular Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the cellular mechanisms underlying cell function in the nervous system across all species. Specialty Chief Editors Egidio D‘Angelo at the University of Pavia and Christian Hansel at the University of Chicago are supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.