Duraisamy Kempuraj, Kirk D Dourvetakis, Jessica Cohen, Daniel Seth Valladares, Rhitik Samir Joshi, Sai Puneeth Kothuru, Tristin Anderson, Baskaran Chinnappan, Amanpreet K Cheema, Nancy G Klimas, Theoharis C Theoharides
{"title":"Neurovascular unit, neuroinflammation and neurodegeneration markers in brain disorders.","authors":"Duraisamy Kempuraj, Kirk D Dourvetakis, Jessica Cohen, Daniel Seth Valladares, Rhitik Samir Joshi, Sai Puneeth Kothuru, Tristin Anderson, Baskaran Chinnappan, Amanpreet K Cheema, Nancy G Klimas, Theoharis C Theoharides","doi":"10.3389/fncel.2024.1491952","DOIUrl":null,"url":null,"abstract":"<p><p>Neurovascular unit (NVU) inflammation via activation of glial cells and neuronal damage plays a critical role in neurodegenerative diseases. Though the exact mechanism of disease pathogenesis is not understood, certain biomarkers provide valuable insight into the disease pathogenesis, severity, progression and therapeutic efficacy. These markers can be used to assess pathophysiological status of brain cells including neurons, astrocytes, microglia, oligodendrocytes, specialized microvascular endothelial cells, pericytes, NVU, and blood-brain barrier (BBB) disruption. Damage or derangements in tight junction (TJ), adherens junction (AdJ), and gap junction (GJ) components of the BBB lead to increased permeability and neuroinflammation in various brain disorders including neurodegenerative disorders. Thus, neuroinflammatory markers can be evaluated in blood, cerebrospinal fluid (CSF), or brain tissues to determine neurological disease severity, progression, and therapeutic responsiveness. Chronic inflammation is common in age-related neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia. Neurotrauma/traumatic brain injury (TBI) also leads to acute and chronic neuroinflammatory responses. The expression of some markers may also be altered many years or even decades before the onset of neurodegenerative disorders. In this review, we discuss markers of neuroinflammation, and neurodegeneration associated with acute and chronic brain disorders, especially those associated with neurovascular pathologies. These biomarkers can be evaluated in CSF, or brain tissues. Neurofilament light (NfL), ubiquitin C-terminal hydrolase-L1 (UCHL1), glial fibrillary acidic protein (GFAP), Ionized calcium-binding adaptor molecule 1 (Iba-1), transmembrane protein 119 (TMEM119), aquaporin, endothelin-1, and platelet-derived growth factor receptor beta (PDGFRβ) are some important neuroinflammatory markers. Recent BBB-on-a-chip modeling offers promising potential for providing an in-depth understanding of brain disorders and neurotherapeutics. Integration of these markers in clinical practice could potentially enhance early diagnosis, monitor disease progression, and improve therapeutic outcomes.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"18 ","pages":"1491952"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544127/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncel.2024.1491952","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neurovascular unit (NVU) inflammation via activation of glial cells and neuronal damage plays a critical role in neurodegenerative diseases. Though the exact mechanism of disease pathogenesis is not understood, certain biomarkers provide valuable insight into the disease pathogenesis, severity, progression and therapeutic efficacy. These markers can be used to assess pathophysiological status of brain cells including neurons, astrocytes, microglia, oligodendrocytes, specialized microvascular endothelial cells, pericytes, NVU, and blood-brain barrier (BBB) disruption. Damage or derangements in tight junction (TJ), adherens junction (AdJ), and gap junction (GJ) components of the BBB lead to increased permeability and neuroinflammation in various brain disorders including neurodegenerative disorders. Thus, neuroinflammatory markers can be evaluated in blood, cerebrospinal fluid (CSF), or brain tissues to determine neurological disease severity, progression, and therapeutic responsiveness. Chronic inflammation is common in age-related neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia. Neurotrauma/traumatic brain injury (TBI) also leads to acute and chronic neuroinflammatory responses. The expression of some markers may also be altered many years or even decades before the onset of neurodegenerative disorders. In this review, we discuss markers of neuroinflammation, and neurodegeneration associated with acute and chronic brain disorders, especially those associated with neurovascular pathologies. These biomarkers can be evaluated in CSF, or brain tissues. Neurofilament light (NfL), ubiquitin C-terminal hydrolase-L1 (UCHL1), glial fibrillary acidic protein (GFAP), Ionized calcium-binding adaptor molecule 1 (Iba-1), transmembrane protein 119 (TMEM119), aquaporin, endothelin-1, and platelet-derived growth factor receptor beta (PDGFRβ) are some important neuroinflammatory markers. Recent BBB-on-a-chip modeling offers promising potential for providing an in-depth understanding of brain disorders and neurotherapeutics. Integration of these markers in clinical practice could potentially enhance early diagnosis, monitor disease progression, and improve therapeutic outcomes.
期刊介绍:
Frontiers in Cellular Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the cellular mechanisms underlying cell function in the nervous system across all species. Specialty Chief Editors Egidio D‘Angelo at the University of Pavia and Christian Hansel at the University of Chicago are supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.