Mengxin Li, Xuanzhong Wang, Jinghui Hong, Juanjuan Mao, Jiasi Chen, Xuyang Chen, Ye Du, Dong Song
{"title":"Transglutaminase 2 in breast cancer metastasis and drug resistance.","authors":"Mengxin Li, Xuanzhong Wang, Jinghui Hong, Juanjuan Mao, Jiasi Chen, Xuyang Chen, Ye Du, Dong Song","doi":"10.3389/fcell.2024.1485258","DOIUrl":null,"url":null,"abstract":"<p><p>Transglutaminase 2 (TG2) is a widely distributed multifunctional protein with various enzymatic and non-enzymatic activities. It is becoming increasingly evident that high levels of TG2 in tumors induce the occurrence of epithelial to mesenchymal transition (EMT) and the acquisition of stem cell-like phenotypes, promoting tumor metastasis and drug resistance. By regulating intracellular and extracellular signaling pathways, TG2 promotes breast cancer metastasis to lung, brain, liver and bone, as well as resistance to various chemotherapy drugs including docetaxel, doxorubicin, platinum and neratinib. More importantly, recent studies described the involvement of TG2 in PD-1/PD-L1 inhibitors resistance. An in-depth understanding of the role that TG2 plays in the progression of metastasis and drug resistance will offer new therapeutic targets for breast cancer treatment. This review covers the extensive and rapidly growing field of the role of TG2 in breast cancer. Based on the role of TG2 in EMT, we summarize TG2-related signaling pathways in breast cancer metastasis and drug resistance and discuss TG2 as a therapeutic target.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1485258"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560871/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2024.1485258","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transglutaminase 2 (TG2) is a widely distributed multifunctional protein with various enzymatic and non-enzymatic activities. It is becoming increasingly evident that high levels of TG2 in tumors induce the occurrence of epithelial to mesenchymal transition (EMT) and the acquisition of stem cell-like phenotypes, promoting tumor metastasis and drug resistance. By regulating intracellular and extracellular signaling pathways, TG2 promotes breast cancer metastasis to lung, brain, liver and bone, as well as resistance to various chemotherapy drugs including docetaxel, doxorubicin, platinum and neratinib. More importantly, recent studies described the involvement of TG2 in PD-1/PD-L1 inhibitors resistance. An in-depth understanding of the role that TG2 plays in the progression of metastasis and drug resistance will offer new therapeutic targets for breast cancer treatment. This review covers the extensive and rapidly growing field of the role of TG2 in breast cancer. Based on the role of TG2 in EMT, we summarize TG2-related signaling pathways in breast cancer metastasis and drug resistance and discuss TG2 as a therapeutic target.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.