Research progress of two-pore potassium channel in myocardial ischemia-reperfusion injury.

IF 3.2 3区 医学 Q2 PHYSIOLOGY Frontiers in Physiology Pub Date : 2024-10-29 eCollection Date: 2024-01-01 DOI:10.3389/fphys.2024.1473501
Yue Zhang, Jing Li, Jiamei Pan, Shengli Deng
{"title":"Research progress of two-pore potassium channel in myocardial ischemia-reperfusion injury.","authors":"Yue Zhang, Jing Li, Jiamei Pan, Shengli Deng","doi":"10.3389/fphys.2024.1473501","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial ischemia-reperfusion injury (MIRI) is a secondary injury caused by restoring blood flow after acute myocardial infarction, which may lead to serious arrhythmia and heart damage. In recent years, the role of potassium channels in MIRI has attracted much attention, especially the members of the two-pore domain potassium (K2P) channel family. K2P channel has unique structure and function, and the formation of its heterodimer increases its functional diversity. This paper reviews the structural characteristics, types, expression and physiological functions of K2P channel in the heart. In particular, we pay attention to whether members of the subfamily such as TWIK, TREK, TASK, TALK, THIK and TRESK participate in MIRI and their related mechanisms. Future research will help to reveal the molecular mechanism of K2P channel in MIRI and provide new strategies for the treatment of cardiovascular diseases.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554511/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2024.1473501","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial ischemia-reperfusion injury (MIRI) is a secondary injury caused by restoring blood flow after acute myocardial infarction, which may lead to serious arrhythmia and heart damage. In recent years, the role of potassium channels in MIRI has attracted much attention, especially the members of the two-pore domain potassium (K2P) channel family. K2P channel has unique structure and function, and the formation of its heterodimer increases its functional diversity. This paper reviews the structural characteristics, types, expression and physiological functions of K2P channel in the heart. In particular, we pay attention to whether members of the subfamily such as TWIK, TREK, TASK, TALK, THIK and TRESK participate in MIRI and their related mechanisms. Future research will help to reveal the molecular mechanism of K2P channel in MIRI and provide new strategies for the treatment of cardiovascular diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心肌缺血再灌注损伤中的双孔钾通道研究进展
心肌缺血再灌注损伤(MIRI)是急性心肌梗死后血流恢复引起的继发性损伤,可导致严重的心律失常和心脏损伤。近年来,钾通道在 MIRI 中的作用备受关注,尤其是双孔结构域钾(K2P)通道家族的成员。K2P 通道具有独特的结构和功能,其异二聚体的形成增加了其功能的多样性。本文综述了 K2P 通道在心脏中的结构特点、类型、表达和生理功能。其中,我们特别关注了 TWIK、TREK、TASK、TALK、THIK 和 TRESK 等亚家族成员是否参与 MIRI 及其相关机制。未来的研究将有助于揭示 K2P 通道在 MIRI 中的分子机制,为心血管疾病的治疗提供新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
5.00%
发文量
2608
审稿时长
14 weeks
期刊介绍: Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Circulating MicroRNAs as potential biomarkers for cerebral collateral circulation in symptomatic carotid stenosis. Commentary: Effects of occlusion pressure on hemodynamic responses recorded by near-infrared spectroscopy across two visits. Modern broiler chickens exhibit a differential gastrointestinal immune and metabolic response to repeated CpG injection relative to a 1950s heritage broiler breed. Aging, not Parkinson's disease, decreases a recalibration of body ownership caused by vision-respiratory interaction. Multi-branch fusion graph neural network based on multi-head attention for childhood seizure detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1