{"title":"A multimodal educational robots driven via dynamic attention.","authors":"An Jianliang","doi":"10.3389/fnbot.2024.1453061","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>With the development of artificial intelligence and robotics technology, the application of educational robots in teaching is becoming increasingly popular. However, effectively evaluating and optimizing multimodal educational robots remains a challenge.</p><p><strong>Methods: </strong>This study introduces Res-ALBEF, a multimodal educational robot framework driven by dynamic attention. Res-ALBEF enhances the ALBEF (Align Before Fuse) method by incorporating residual connections to align visual and textual data more effectively before fusion. In addition, the model integrates a VGG19-based convolutional network for image feature extraction and utilizes a dynamic attention mechanism to dynamically focus on relevant parts of multimodal inputs. Our model was trained using a diverse dataset consisting of 50,000 multimodal educational instances, covering a variety of subjects and instructional content.</p><p><strong>Results and discussion: </strong>The evaluation on an independent validation set of 10,000 samples demonstrated significant performance improvements: the model achieved an overall accuracy of 97.38% in educational content recognition. These results highlight the model's ability to improve alignment and fusion of multimodal information, making it a robust solution for multimodal educational robots.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1453061"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560911/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1453061","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: With the development of artificial intelligence and robotics technology, the application of educational robots in teaching is becoming increasingly popular. However, effectively evaluating and optimizing multimodal educational robots remains a challenge.
Methods: This study introduces Res-ALBEF, a multimodal educational robot framework driven by dynamic attention. Res-ALBEF enhances the ALBEF (Align Before Fuse) method by incorporating residual connections to align visual and textual data more effectively before fusion. In addition, the model integrates a VGG19-based convolutional network for image feature extraction and utilizes a dynamic attention mechanism to dynamically focus on relevant parts of multimodal inputs. Our model was trained using a diverse dataset consisting of 50,000 multimodal educational instances, covering a variety of subjects and instructional content.
Results and discussion: The evaluation on an independent validation set of 10,000 samples demonstrated significant performance improvements: the model achieved an overall accuracy of 97.38% in educational content recognition. These results highlight the model's ability to improve alignment and fusion of multimodal information, making it a robust solution for multimodal educational robots.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.