Gloria Ciniero, Tiago Marques Pedro, Charles Dumontet, Ahmed H Elmenoufy, Frederick G West, Michael Weinfeld, Francesco Gentile, Jack A Tuszynski, Emeline Cros-Perrial, Lars Petter Jordheim
{"title":"The synergy between alkylating agents and ERCC1-XPF inhibitors is p53 dependent.","authors":"Gloria Ciniero, Tiago Marques Pedro, Charles Dumontet, Ahmed H Elmenoufy, Frederick G West, Michael Weinfeld, Francesco Gentile, Jack A Tuszynski, Emeline Cros-Perrial, Lars Petter Jordheim","doi":"10.1111/fcp.13043","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>DNA repair plays a major role in maintaining genomic stability, thus limiting the transformation of normal cells into cancer cells. However, in cancer patients treated with DNA-targeting drugs, DNA repair can decrease efficacy by removing the damage generated by such molecules that is needed to induce pharmacological activity. Inhibiting DNA repair thus represents an interesting approach to potentiating the activity of chemotherapy in this setting.</p><p><strong>Objectives: </strong>Here, we continue the characterization of an inhibitor of the interaction between Excision Repair Cross-Complementing Rrodent repair deficiency complementation group 1 (ERCC1) and Xeroderma Pigmentousum group F (XPF) (B9), two key proteins of nucleotide excision repair.</p><p><strong>Methods: </strong>We used various cell lines and co-incubation studies for the determination of cell survival and DNA repair capacities.</p><p><strong>Results: </strong>We show that it is synergistic with other platinum derivatives than previously described, and that synergy is lacking in cells not expressing ERCC1 or XPF. Finally, a series of experiments show that potentiation is observed only in cells expressing wild-type p53.</p><p><strong>Conclusion: </strong>Our results confirm the mechanism of action of our ERCC1-XPF inhibitor and give important additional data on this approach to enhance the activity of already existing cancer drugs.</p>","PeriodicalId":12657,"journal":{"name":"Fundamental & Clinical Pharmacology","volume":" ","pages":"e13043"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental & Clinical Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/fcp.13043","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: DNA repair plays a major role in maintaining genomic stability, thus limiting the transformation of normal cells into cancer cells. However, in cancer patients treated with DNA-targeting drugs, DNA repair can decrease efficacy by removing the damage generated by such molecules that is needed to induce pharmacological activity. Inhibiting DNA repair thus represents an interesting approach to potentiating the activity of chemotherapy in this setting.
Objectives: Here, we continue the characterization of an inhibitor of the interaction between Excision Repair Cross-Complementing Rrodent repair deficiency complementation group 1 (ERCC1) and Xeroderma Pigmentousum group F (XPF) (B9), two key proteins of nucleotide excision repair.
Methods: We used various cell lines and co-incubation studies for the determination of cell survival and DNA repair capacities.
Results: We show that it is synergistic with other platinum derivatives than previously described, and that synergy is lacking in cells not expressing ERCC1 or XPF. Finally, a series of experiments show that potentiation is observed only in cells expressing wild-type p53.
Conclusion: Our results confirm the mechanism of action of our ERCC1-XPF inhibitor and give important additional data on this approach to enhance the activity of already existing cancer drugs.
期刊介绍:
Fundamental & Clinical Pharmacology publishes reports describing important and novel developments in fundamental as well as clinical research relevant to drug therapy. Original articles, short communications and reviews are published on all aspects of experimental and clinical pharmacology including:
Antimicrobial, Antiviral Agents
Autonomic Pharmacology
Cardiovascular Pharmacology
Cellular Pharmacology
Clinical Trials
Endocrinopharmacology
Gene Therapy
Inflammation, Immunopharmacology
Lipids, Atherosclerosis
Liver and G-I Tract Pharmacology
Metabolism, Pharmacokinetics
Neuropharmacology
Neuropsychopharmacology
Oncopharmacology
Pediatric Pharmacology Development
Pharmacoeconomics
Pharmacoepidemiology
Pharmacogenetics, Pharmacogenomics
Pharmacovigilance
Pulmonary Pharmacology
Receptors, Signal Transduction
Renal Pharmacology
Thrombosis and Hemostasis
Toxicopharmacology
Clinical research, including clinical studies and clinical trials, may cover disciplines such as pharmacokinetics, pharmacodynamics, pharmacovigilance, pharmacoepidemiology, pharmacogenomics and pharmacoeconomics. Basic research articles from fields such as physiology and molecular biology which contribute to an understanding of drug therapy are also welcomed.