Kornwika Senglek, Chinachote Teerapakpinyo, Nutchawan Jittapiromsak, Pakrit Jittapiromsak, Irin Lertparinyaphorn, Paul Scott Thorner, Shanop Shuangshoti
{"title":"Differential Expression of Proteins and Genes at the Tumor-Brain Interface in Invasive Meningioma","authors":"Kornwika Senglek, Chinachote Teerapakpinyo, Nutchawan Jittapiromsak, Pakrit Jittapiromsak, Irin Lertparinyaphorn, Paul Scott Thorner, Shanop Shuangshoti","doi":"10.1002/gcc.70007","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Most meningiomas are dural-based extra-axial tumors in close contact with the brain. Expression of genes and proteins at the tumor-brain interface in brain-invasive meningioma is basically unknown. Using the NanoString pan-cancer panel, differential expression of genes in the invasive edge versus main tumor body was determined in 12 invasive meningiomas (comprising the discovery cohort), and 6 candidate genes: <i>DTX1</i>, <i>RASGRF1</i>, <i>GRIN1</i>, <i>TNR</i>, <i>IL6</i>, and <i>NR4A1</i>, were identified. By immunohistochemistry, DTX1 and RASGRF1 expression correlated with gene expression, and were studied in an expanded cohort of 21 invasive and 15 noninvasive meningiomas, together with Ki-67. Significantly higher expression of DTX1, RASGFR1, and Ki-67 was found in the invasive edge compared with the main tumor body. Increased expression of RASGRF1 and Ki-67 was more clearly associated with brain invasion. The situation with DTX1 was less definitive since increased expression was observed in meningiomas both at the invasive edge and when in close contact with brain but without invasion. Pathway analyses identified significant links between <i>DTX1</i> and <i>RASGRF1</i> and key biological processes, including cell–cell adhesion, and signaling pathways including Notch, RAS, MAPK, and Rho. Higher expression of DTX1, RASGRF1, and Ki-67 in the brain-invasive area of meningiomas suggests that these proteins play a role in the process of brain invasion.</p>\n </div>","PeriodicalId":12700,"journal":{"name":"Genes, Chromosomes & Cancer","volume":"63 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes, Chromosomes & Cancer","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gcc.70007","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Most meningiomas are dural-based extra-axial tumors in close contact with the brain. Expression of genes and proteins at the tumor-brain interface in brain-invasive meningioma is basically unknown. Using the NanoString pan-cancer panel, differential expression of genes in the invasive edge versus main tumor body was determined in 12 invasive meningiomas (comprising the discovery cohort), and 6 candidate genes: DTX1, RASGRF1, GRIN1, TNR, IL6, and NR4A1, were identified. By immunohistochemistry, DTX1 and RASGRF1 expression correlated with gene expression, and were studied in an expanded cohort of 21 invasive and 15 noninvasive meningiomas, together with Ki-67. Significantly higher expression of DTX1, RASGFR1, and Ki-67 was found in the invasive edge compared with the main tumor body. Increased expression of RASGRF1 and Ki-67 was more clearly associated with brain invasion. The situation with DTX1 was less definitive since increased expression was observed in meningiomas both at the invasive edge and when in close contact with brain but without invasion. Pathway analyses identified significant links between DTX1 and RASGRF1 and key biological processes, including cell–cell adhesion, and signaling pathways including Notch, RAS, MAPK, and Rho. Higher expression of DTX1, RASGRF1, and Ki-67 in the brain-invasive area of meningiomas suggests that these proteins play a role in the process of brain invasion.
期刊介绍:
Genes, Chromosomes & Cancer will offer rapid publication of original full-length research articles, perspectives, reviews and letters to the editors on genetic analysis as related to the study of neoplasia. The main scope of the journal is to communicate new insights into the etiology and/or pathogenesis of neoplasia, as well as molecular and cellular findings of relevance for the management of cancer patients. While preference will be given to research utilizing analytical and functional approaches, descriptive studies and case reports will also be welcomed when they offer insights regarding basic biological mechanisms or the clinical management of neoplastic disorders.