Non-invasive Assessment of Cerebral Hemodynamics Using Resting-State Functional Magnetic Resonance Imaging in Multiple Sclerosis and Age-Related White Matter Lesions
Ahmed Khalil, Susanna Asseyer, Rebekka Rust, Tanja Schmitz-Hübsch, Jochen B. Fiebach, Friedemann Paul, Claudia Chien
{"title":"Non-invasive Assessment of Cerebral Hemodynamics Using Resting-State Functional Magnetic Resonance Imaging in Multiple Sclerosis and Age-Related White Matter Lesions","authors":"Ahmed Khalil, Susanna Asseyer, Rebekka Rust, Tanja Schmitz-Hübsch, Jochen B. Fiebach, Friedemann Paul, Claudia Chien","doi":"10.1002/hbm.70076","DOIUrl":null,"url":null,"abstract":"<p>Perfusion changes in white matter (WM) lesions and normal-appearing brain regions play an important pathophysiological role in multiple sclerosis (MS). However, most perfusion imaging methods require exogenous contrast agents, the repeated use of which is discouraged. Using resting-state functional MRI (rs-fMRI), we aimed to investigate differences in perfusion between white matter lesions and normal-appearing brain regions in MS and healthy participants. A total of 41 MS patients and 41 age- and sex-matched healthy participants received rs-fMRI, from which measures of cerebral hemodynamics and oxygenation were extracted and compared across brain regions and study groups using within- and between-group nonparametric tests, linear mixed models, and robust multiple linear regression. We found longer blood arrival times and lower blood volumes in lesions than in normal-appearing WM. Higher blood volumes were found in MS patients' deep WM lesions compared to healthy participants, and blood arrival time was more delayed in MS patients' deep WM lesions than in healthy participants. Delayed blood arrival time in the cortical grey matter was associated with greater cognitive impairment in MS patients. Perfusion imaging using rs-fMRI is useful for WM lesion characterization. rs-fMRI-based blood arrival times and volumes are associated with cognitive function.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"45 16","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70076","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Perfusion changes in white matter (WM) lesions and normal-appearing brain regions play an important pathophysiological role in multiple sclerosis (MS). However, most perfusion imaging methods require exogenous contrast agents, the repeated use of which is discouraged. Using resting-state functional MRI (rs-fMRI), we aimed to investigate differences in perfusion between white matter lesions and normal-appearing brain regions in MS and healthy participants. A total of 41 MS patients and 41 age- and sex-matched healthy participants received rs-fMRI, from which measures of cerebral hemodynamics and oxygenation were extracted and compared across brain regions and study groups using within- and between-group nonparametric tests, linear mixed models, and robust multiple linear regression. We found longer blood arrival times and lower blood volumes in lesions than in normal-appearing WM. Higher blood volumes were found in MS patients' deep WM lesions compared to healthy participants, and blood arrival time was more delayed in MS patients' deep WM lesions than in healthy participants. Delayed blood arrival time in the cortical grey matter was associated with greater cognitive impairment in MS patients. Perfusion imaging using rs-fMRI is useful for WM lesion characterization. rs-fMRI-based blood arrival times and volumes are associated with cognitive function.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.