Genetic analysis implicates ERAP1 and HLA as risk factors for severe Puumala virus infection.

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Human molecular genetics Pub Date : 2024-11-13 DOI:10.1093/hmg/ddae158
Hele Haapaniemi, Satu Strausz, Anniina Tervi, Samuel E Jones, Mari Kanerva, Erik Abner, Anne-Marie Fors Connolly, Hanna M Ollila
{"title":"Genetic analysis implicates ERAP1 and HLA as risk factors for severe Puumala virus infection.","authors":"Hele Haapaniemi, Satu Strausz, Anniina Tervi, Samuel E Jones, Mari Kanerva, Erik Abner, Anne-Marie Fors Connolly, Hanna M Ollila","doi":"10.1093/hmg/ddae158","DOIUrl":null,"url":null,"abstract":"<p><p>Puumala virus (PUUV) infections can cause severe illnesses such as Hemorrhagic Fever with Renal Syndrome in humans. However, human genetic risk factors contributing to disease severity are still poorly understood. Our goal was to elucidate genetic factors contributing to PUUV infections and understand the biological mechanisms underlying individual vulnerability to PUUV infections. Leveraging data from the FinnGen study, we conducted a genome-wide association study on severe Hemorrhagic Fever with Renal Syndrome caused by PUUV with 2227 cases. We identified associations at the Human Leukocyte Antigen (HLA) locus and ERAP1 with severe PUUV infection. HLA molecules are canonical mediators for immune recognition and response. ERAP1 facilitates immune system recognition and activation by cleaving viral proteins into smaller peptides which are presented to the immune system via HLA class I molecules. Notably, we identified that the lead variant (rs26653, OR = 0.84, P = 2.9 × 10-8) in the ERAP1 gene was a missense variant changing amino acid arginine to proline. From the HLA region, we showed independent and significant associations with both HLA class I and II genes. Furthermore, we showed independent associations with four HLA alleles with severe PUUV infection using conditional HLA fine mapping. The strongest association was found with the HLA-C*07:01 allele (OR = 1.54, P = 4.0 × 10-24) followed by signals at HLA-B*13:02, HLA-DRB1*01:01, and HLA-DRB1*11:01 alleles (P < 5 × 10-8). Our findings suggest an association of viral peptide processing with ERAP1 and antigen presentation through HLA alleles that may contribute to the development of severe PUUV disease.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae158","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Puumala virus (PUUV) infections can cause severe illnesses such as Hemorrhagic Fever with Renal Syndrome in humans. However, human genetic risk factors contributing to disease severity are still poorly understood. Our goal was to elucidate genetic factors contributing to PUUV infections and understand the biological mechanisms underlying individual vulnerability to PUUV infections. Leveraging data from the FinnGen study, we conducted a genome-wide association study on severe Hemorrhagic Fever with Renal Syndrome caused by PUUV with 2227 cases. We identified associations at the Human Leukocyte Antigen (HLA) locus and ERAP1 with severe PUUV infection. HLA molecules are canonical mediators for immune recognition and response. ERAP1 facilitates immune system recognition and activation by cleaving viral proteins into smaller peptides which are presented to the immune system via HLA class I molecules. Notably, we identified that the lead variant (rs26653, OR = 0.84, P = 2.9 × 10-8) in the ERAP1 gene was a missense variant changing amino acid arginine to proline. From the HLA region, we showed independent and significant associations with both HLA class I and II genes. Furthermore, we showed independent associations with four HLA alleles with severe PUUV infection using conditional HLA fine mapping. The strongest association was found with the HLA-C*07:01 allele (OR = 1.54, P = 4.0 × 10-24) followed by signals at HLA-B*13:02, HLA-DRB1*01:01, and HLA-DRB1*11:01 alleles (P < 5 × 10-8). Our findings suggest an association of viral peptide processing with ERAP1 and antigen presentation through HLA alleles that may contribute to the development of severe PUUV disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传分析表明,ERAP1 和 HLA 是严重 Puumala 病毒感染的风险因素。
普姆巴拉病毒(PUUV)感染可导致严重疾病,如出血热伴肾综合征。然而,人们对导致疾病严重性的人类遗传风险因素仍然知之甚少。我们的目标是阐明导致 PUUV 感染的遗传因素,并了解个体易受 PUUV 感染的生物机制。利用 FinnGen 研究的数据,我们对 2227 例由 PUUV 引起的严重出血热伴肾综合征进行了全基因组关联研究。我们发现人类白细胞抗原(HLA)基因座和 ERAP1 与 PUUV 重症感染存在关联。HLA 分子是免疫识别和反应的典型介质。ERAP1 可将病毒蛋白裂解成小肽,并通过 HLA I 类分子呈现给免疫系统,从而促进免疫系统的识别和激活。值得注意的是,我们发现 ERAP1 基因中的主导变异(rs26653,OR = 0.84,P = 2.9 × 10-8)是一个将氨基酸精氨酸变为脯氨酸的错义变异。从 HLA 区域来看,我们发现与 HLA I 类和 II 类基因都有独立且显著的关联。此外,通过条件性 HLA 精细图谱,我们还发现四种 HLA 等位基因与 PUUV 重度感染存在独立关联。与 HLA-C*07:01 等位基因的关联性最强(OR = 1.54,P = 4.0 × 10-24),其次是 HLA-B*13:02、HLA-DRB1*01:01 和 HLA-DRB1*11:01 等位基因的信号(P = 0.0 × 10-24)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
期刊最新文献
Dissecting the shared genetic architecture between nonalcoholic fatty liver disease and type 2 diabetes. Integrated multi-omics analysis revealed the molecular networks and potential targets of cellular senescence in Alzheimer's disease. Motor pool selectivity of neuromuscular degeneration in type I spinal muscular atrophy is conserved between human and mouse. Use of patient-derived cell models for characterization of compound heterozygous hypomorphic C2CD3 variants in a patient with isolated nephronophthisis. Identification of ZNF850 as a novel CTG repeat expansion-related gene in myotonic dystrophy type 1 patient-derived iPSCs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1