Long Qian, Juan Zhao, Mengtao Fan, Jie Wang, Zhuqing Ji
{"title":"CITED2 Attenuates Ischemia Reperfusion-Induced Pyroptosis and Injury in Cardiomyocyte.","authors":"Long Qian, Juan Zhao, Mengtao Fan, Jie Wang, Zhuqing Ji","doi":"10.1536/ihj.24-060","DOIUrl":null,"url":null,"abstract":"<p><p>To examine the role of CITED2 in myocardial ischemia/reperfusion injury (MIRI) in a cell model and uncover the mechanism, hypoxia/reoxygenation (H/R) -stimulated H9C2 cell model was utilized as a MIRI cell model. Quantitative polymerase chain reaction (qPCR) as well as immunoblot assays were carried out to determine the expression of CITED2 in the MIRI cell model. MTT as well as lactate dehydrogenase assays were employed to detect the survival of H/R-stimulated H9C2 cells. Immunoblot, flow cytometry, qPCR, and enzyme-linked immunosorbent assay were carried out to assess the pyroptosis and inflammation in H9C2 cells. Immunoblot assays were used to confirm the mechanism. The expression of CITED2 was low in H/R-stimulated H9C2 cells. CITED2 can increase the survival of H/R-stimulated H9C2 cells. Additionally, CITED2 restrained H/R-stimulated pyroptosis of H9C2 cells. It also restrained the release of H/R-induced inflammatory factors. Mechanically, CITED2 inhibited HIF-1α expression, thereby suppressing MIRI progression. CITED2 attenuates MIRI in cardiomyocytes via mediating HIF-1α expression.</p>","PeriodicalId":13711,"journal":{"name":"International heart journal","volume":" ","pages":"1087-1094"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International heart journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1536/ihj.24-060","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
To examine the role of CITED2 in myocardial ischemia/reperfusion injury (MIRI) in a cell model and uncover the mechanism, hypoxia/reoxygenation (H/R) -stimulated H9C2 cell model was utilized as a MIRI cell model. Quantitative polymerase chain reaction (qPCR) as well as immunoblot assays were carried out to determine the expression of CITED2 in the MIRI cell model. MTT as well as lactate dehydrogenase assays were employed to detect the survival of H/R-stimulated H9C2 cells. Immunoblot, flow cytometry, qPCR, and enzyme-linked immunosorbent assay were carried out to assess the pyroptosis and inflammation in H9C2 cells. Immunoblot assays were used to confirm the mechanism. The expression of CITED2 was low in H/R-stimulated H9C2 cells. CITED2 can increase the survival of H/R-stimulated H9C2 cells. Additionally, CITED2 restrained H/R-stimulated pyroptosis of H9C2 cells. It also restrained the release of H/R-induced inflammatory factors. Mechanically, CITED2 inhibited HIF-1α expression, thereby suppressing MIRI progression. CITED2 attenuates MIRI in cardiomyocytes via mediating HIF-1α expression.
期刊介绍:
Authors of research articles should disclose at the time of submission any financial arrangement they may have with a company whose product figures prominently in the submitted manuscript or with a company making a competing product. Such information will be held in confidence while the paper is under review and will not influence the editorial decision, but if the article is accepted for publication, the editors will usually discuss with the authors the manner in which such information is to be communicated to the reader.