{"title":"Joint suppression of cardiac bSSFP cine banding and flow artifacts using twofold phase-cycling and a dual-encoder neural network.","authors":"Zhuo Chen, Yiwen Gong, Haiyang Chen, Yixin Emu, Juan Gao, Zhongjie Zhou, Yiwen Shen, Xin Tang, Sha Hua, Wei Jin, Chenxi Hu","doi":"10.1016/j.jocmr.2024.101123","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiac bSSFP cine imaging suffers from banding and flow artifacts induced by off-resonance. The work aimed to develop a twofold phase cycling sequence with a neural network-based reconstruction (2P-SSFP+Network) for a joint suppression of banding and flow artifacts in cardiac cine imaging.</p><p><strong>Methods: </strong>A dual-encoder neural network was trained on 1620 pairs of phase-cycled left ventricular (LV) cine images collected from 18 healthy subjects. Twenty healthy subjects and 25 patients were prospectively scanned using the proposed 2P-SSFP sequence. bSSFP cine of a single RF phase increment (1P-SSFP), bSSFP cine of a single RF phase increment with a network-based artifact reduction (1P-SSFP+Network), the averaging of the two phase-cycled images (2P-SSFP+Average), and the proposed method were mutually compared, in terms of artifact suppression performance in the LV, generalizability over altered scan parameters and scanners, suppression of large-area banding artifacts in the left atrium (LA), and accuracy of downstream segmentation tasks.</p><p><strong>Results: </strong>In the healthy subjects, 2P-SSFP+Network showed robust suppressions of artifacts across a range of phase combinations. Compared with 1P-SSFP and 2P-SSFP+Average, 2P-SSFP+Network improved banding artifacts (3.85±0.67 and 4.50±0.45 vs 5.00±0.00, P<0.01 and P=0.02, respectively), flow artifacts (3.35±0.78 and 2.10±0.77 vs 4.90±0.20, both P<0.01), and overall image quality (3.25±0.51 and 2.30±0.60 vs 4.75±0.25, both P<0.01). 1P-SSFP+Network and 2P-SSFP+Network achieved a similar artifact suppression performance, yet the latter had fewer hallucinations (two-chamber, 4.25±0.51 vs 4.85±0.45, P=0.04; four-chamber, 3.45±1.21 vs 4.65±0.50, P=0.03; and LA, 3.35±1.00 vs 4.65±0.45, P<0.01). Furthermore, in the pulmonary veins and LA, 1P-SSFP+Network could not eliminate banding artifacts since they occupied a large area, whereas 2P-SSFP+Network reliably suppressed the artifacts. In the downstream automated myocardial segmentation task, 2P-SSFP+Network achieved more accurate segmentations than 1P-SSFP with different phase increments.</p><p><strong>Conclusions: </strong>2P-SSFP+Network jointly suppresses banding and flow artifacts while manifesting a good generalizability against variations of anatomy and scan parameters. It provides a feasible solution for robust suppression of the two types of artifacts in bSSFP cine imaging.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101123"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2024.101123","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cardiac bSSFP cine imaging suffers from banding and flow artifacts induced by off-resonance. The work aimed to develop a twofold phase cycling sequence with a neural network-based reconstruction (2P-SSFP+Network) for a joint suppression of banding and flow artifacts in cardiac cine imaging.
Methods: A dual-encoder neural network was trained on 1620 pairs of phase-cycled left ventricular (LV) cine images collected from 18 healthy subjects. Twenty healthy subjects and 25 patients were prospectively scanned using the proposed 2P-SSFP sequence. bSSFP cine of a single RF phase increment (1P-SSFP), bSSFP cine of a single RF phase increment with a network-based artifact reduction (1P-SSFP+Network), the averaging of the two phase-cycled images (2P-SSFP+Average), and the proposed method were mutually compared, in terms of artifact suppression performance in the LV, generalizability over altered scan parameters and scanners, suppression of large-area banding artifacts in the left atrium (LA), and accuracy of downstream segmentation tasks.
Results: In the healthy subjects, 2P-SSFP+Network showed robust suppressions of artifacts across a range of phase combinations. Compared with 1P-SSFP and 2P-SSFP+Average, 2P-SSFP+Network improved banding artifacts (3.85±0.67 and 4.50±0.45 vs 5.00±0.00, P<0.01 and P=0.02, respectively), flow artifacts (3.35±0.78 and 2.10±0.77 vs 4.90±0.20, both P<0.01), and overall image quality (3.25±0.51 and 2.30±0.60 vs 4.75±0.25, both P<0.01). 1P-SSFP+Network and 2P-SSFP+Network achieved a similar artifact suppression performance, yet the latter had fewer hallucinations (two-chamber, 4.25±0.51 vs 4.85±0.45, P=0.04; four-chamber, 3.45±1.21 vs 4.65±0.50, P=0.03; and LA, 3.35±1.00 vs 4.65±0.45, P<0.01). Furthermore, in the pulmonary veins and LA, 1P-SSFP+Network could not eliminate banding artifacts since they occupied a large area, whereas 2P-SSFP+Network reliably suppressed the artifacts. In the downstream automated myocardial segmentation task, 2P-SSFP+Network achieved more accurate segmentations than 1P-SSFP with different phase increments.
Conclusions: 2P-SSFP+Network jointly suppresses banding and flow artifacts while manifesting a good generalizability against variations of anatomy and scan parameters. It provides a feasible solution for robust suppression of the two types of artifacts in bSSFP cine imaging.
期刊介绍:
Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to:
New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system.
New methods to enhance or accelerate image acquisition and data analysis.
Results of multicenter, or larger single-center studies that provide insight into the utility of CMR.
Basic biological perceptions derived by CMR methods.