Customized GPT model largely increases surgery decision accuracy for pharmaco-resistant epilepsy

IF 1.9 4区 医学 Q3 CLINICAL NEUROLOGY Journal of Clinical Neuroscience Pub Date : 2024-11-13 DOI:10.1016/j.jocn.2024.110918
Kuo-Liang Chiang , Yu-Cheng Chou , Hsin Tung , Chin-Yin Huang , Liang-Po Hsieh , Kai-Ping Chang , Shang-Yeong Kwan , Wan-Yu Huang
{"title":"Customized GPT model largely increases surgery decision accuracy for pharmaco-resistant epilepsy","authors":"Kuo-Liang Chiang ,&nbsp;Yu-Cheng Chou ,&nbsp;Hsin Tung ,&nbsp;Chin-Yin Huang ,&nbsp;Liang-Po Hsieh ,&nbsp;Kai-Ping Chang ,&nbsp;Shang-Yeong Kwan ,&nbsp;Wan-Yu Huang","doi":"10.1016/j.jocn.2024.110918","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>To develop an enhanced epilepsy diagnosis system by integrating an expert-informed ontology with a custom generative pre-trained transformer (GPT), validated by inferring possible seizure lateralization and localization using retrospective textual data from the pre-surgical assessments of patients with pharmaco-resistant epilepsy (PRE).</div></div><div><h3>Methods</h3><div>We developed an AI system for epilepsy diagnosis using Protégé with OWL/SWRL, integrating a knowledge base with seizure semiology, seizure types EEG descriptors, expert insights, and literature to pinpoint seizure locations. A customized GPT model was then tailored for specific diagnostic needs. Validated through 16 surgical cases, the system’s accuracy in seizure localization and the JSON (JavaScript Object Notation) Epilepsy Matcher’s term matching capabilities were confirmed against a Protégé-based knowledge base.</div></div><div><h3>Results</h3><div>A total of 117 patients with PRE underwent video-EEG monitoring at a single institution. However, only 16 of these patients received epilepsy surgery. The Protégé system achieved 75 % accuracy in diagnosing epilepsy from 16 cases using semiology, which increased to 87.5 % with EEG data. The Json Epilepsy Matcher further improved accuracy to 87.5 % with symptoms alone and 93.8 % when including EEG data, highlighting the benefits of applying GPT techniques.</div></div><div><h3>Conclusions</h3><div>This study highlights the efficacy of the JSON Epilepsy Matcher in improving seizure diagnosis accuracy. When combined with EEG data, it achieves a 93.8 % accuracy rate, suggesting a potential improvement in the practicality and generalizability of the original ontology expert system, boosting physicians’ confidence in confirming surgery and potentially sparing many children from prolonged suffering. This innovative approach not only improves diagnostic accuracy but also sets a precedent for future applications of AI in neurology.</div></div>","PeriodicalId":15487,"journal":{"name":"Journal of Clinical Neuroscience","volume":"130 ","pages":"Article 110918"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967586824004570","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

To develop an enhanced epilepsy diagnosis system by integrating an expert-informed ontology with a custom generative pre-trained transformer (GPT), validated by inferring possible seizure lateralization and localization using retrospective textual data from the pre-surgical assessments of patients with pharmaco-resistant epilepsy (PRE).

Methods

We developed an AI system for epilepsy diagnosis using Protégé with OWL/SWRL, integrating a knowledge base with seizure semiology, seizure types EEG descriptors, expert insights, and literature to pinpoint seizure locations. A customized GPT model was then tailored for specific diagnostic needs. Validated through 16 surgical cases, the system’s accuracy in seizure localization and the JSON (JavaScript Object Notation) Epilepsy Matcher’s term matching capabilities were confirmed against a Protégé-based knowledge base.

Results

A total of 117 patients with PRE underwent video-EEG monitoring at a single institution. However, only 16 of these patients received epilepsy surgery. The Protégé system achieved 75 % accuracy in diagnosing epilepsy from 16 cases using semiology, which increased to 87.5 % with EEG data. The Json Epilepsy Matcher further improved accuracy to 87.5 % with symptoms alone and 93.8 % when including EEG data, highlighting the benefits of applying GPT techniques.

Conclusions

This study highlights the efficacy of the JSON Epilepsy Matcher in improving seizure diagnosis accuracy. When combined with EEG data, it achieves a 93.8 % accuracy rate, suggesting a potential improvement in the practicality and generalizability of the original ontology expert system, boosting physicians’ confidence in confirming surgery and potentially sparing many children from prolonged suffering. This innovative approach not only improves diagnostic accuracy but also sets a precedent for future applications of AI in neurology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定制的 GPT 模型大大提高了药物耐药性癫痫的手术决策准确性。
背景:通过将专家提供的本体与定制的生成式预训练转换器(GPT)整合在一起,开发出一种增强型癫痫诊断系统,该系统通过使用药物抵抗性癫痫(PRE)患者手术前评估的回顾性文本数据推断可能的发作侧位和定位来进行验证:我们使用 Protégé 和 OWL/SWRL 开发了一套用于癫痫诊断的人工智能系统,该系统集成了一个包含癫痫发作符号学、癫痫发作类型脑电图描述符、专家见解和文献的知识库,可精确定位癫痫发作位置。然后,针对特定诊断需求定制了 GPT 模型。通过 16 例手术验证了该系统在癫痫发作定位方面的准确性,并根据基于 Protégé 的知识库确认了 JSON(JavaScript Object Notation,JavaScript 对象符号)癫痫匹配器的术语匹配能力:一家医疗机构共对 117 名 PRE 患者进行了视频脑电图监测。但其中只有 16 名患者接受了癫痫手术。Protégé 系统使用符号学对 16 例患者进行癫痫诊断的准确率为 75%,使用脑电图数据时准确率提高到 87.5%。Json 癫痫匹配器进一步提高了准确率,仅使用症状诊断的准确率就达到了 87.5%,而加入脑电图数据后则达到了 93.8%,凸显了应用 GPT 技术的优势:本研究强调了 JSON 癫痫匹配器在提高癫痫发作诊断准确率方面的功效。当与脑电图数据相结合时,它的准确率达到了 93.8%,这表明原始本体专家系统的实用性和通用性有了潜在的提高,增强了医生确认手术的信心,并有可能使许多儿童免于长期的痛苦。这一创新方法不仅提高了诊断准确率,还为人工智能在神经病学领域的未来应用开创了先例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Clinical Neuroscience
Journal of Clinical Neuroscience 医学-临床神经学
CiteScore
4.50
自引率
0.00%
发文量
402
审稿时长
40 days
期刊介绍: This International journal, Journal of Clinical Neuroscience, publishes articles on clinical neurosurgery and neurology and the related neurosciences such as neuro-pathology, neuro-radiology, neuro-ophthalmology and neuro-physiology. The journal has a broad International perspective, and emphasises the advances occurring in Asia, the Pacific Rim region, Europe and North America. The Journal acts as a focus for publication of major clinical and laboratory research, as well as publishing solicited manuscripts on specific subjects from experts, case reports and other information of interest to clinicians working in the clinical neurosciences.
期刊最新文献
National trends of Laser interstitial thermal therapy (LITT) and Vagus Nerve stimulation (VNS) for refractory epilepsy in adult patients: A Nationwide Inpatient Sample based propensity score matched analysis Effect of blood pressure variability on the outcomes of acute ischemic stroke patients undergoing intravenous thrombolysis Expanded endoscopic endonasal approach to a retrochiasmatic craniopharyngioma with significant retroclival cystic extension Endoscopic strategies for giant V2 schwannoma: A step-by-step guide to the combined endonasal and pre lacrimal approaches Optical coherence tomography as an adjunct tool to assess response to treatment in cerebral venous thrombosis: A prospective longitudinal study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1