Unraveling the physiochemical characteristics and molecular insights of Zein protein through structural modeling and conformational dynamics: a synergistic approach between machine learning and molecular dynamics simulations.
{"title":"Unraveling the physiochemical characteristics and molecular insights of Zein protein through structural modeling and conformational dynamics: a synergistic approach between machine learning and molecular dynamics simulations.","authors":"Amit Kumar Srivastav, Jyoti Jaiswal, Umesh Kumar","doi":"10.1080/07391102.2024.2428825","DOIUrl":null,"url":null,"abstract":"<p><p>This research article presents a comprehensive investigation into the three-dimensional structure, physicochemical characteristics and conformational stability of the Zein protein. Machine learning (ML) based homology modeling approach, was employed to predict the 3D structure of Zein protein. Convolutional neural networks (CNNs) were utilized for refining the model, capturing complex spatial features and improving decoy refinement. The predicted 3D structure of Zein protein showed a high-confidence score, i.e. C-score of 0.96. Physiochemical characteristic was also analyzed to investigate its protonation and deprotonation behavior across a range of pH values. A comprehensive analysis of the titration curve and electrostatic charges was performed to uncover valuable molecular insights into the zein protein's charge distribution, electrostatic interactions and potential conformational changes. Molecular dynamics (MD) simulations were performed to analyze the zein structural behavior under different pH values (2.0, 4.5, 6.8, 10.0 and 12.5), ionic strengths (0 mM, 25 mM, 50 mM, 75 mM, 100 mM) and temperatures (300K, 350K, 375K). Our results demonstrated the influence of these factors on zein protein's stability and conformational dynamics. At extreme pH values of 2.0 and 12.5, the Zein protein exhibited increased structural deviations and potential unfolding, while intermediate pH values closer to the protein's isoelectric point (pI) demonstrated more compact and stable conformations. Analysis of root mean square deviation, radius of gyration, solvent accessible surface area and Ramachandran plot provided clear understandings of the protein's compactness and surface exposure, confirming the impact of pH, ionic strength and temperature on the protein's conformation.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-20"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2428825","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This research article presents a comprehensive investigation into the three-dimensional structure, physicochemical characteristics and conformational stability of the Zein protein. Machine learning (ML) based homology modeling approach, was employed to predict the 3D structure of Zein protein. Convolutional neural networks (CNNs) were utilized for refining the model, capturing complex spatial features and improving decoy refinement. The predicted 3D structure of Zein protein showed a high-confidence score, i.e. C-score of 0.96. Physiochemical characteristic was also analyzed to investigate its protonation and deprotonation behavior across a range of pH values. A comprehensive analysis of the titration curve and electrostatic charges was performed to uncover valuable molecular insights into the zein protein's charge distribution, electrostatic interactions and potential conformational changes. Molecular dynamics (MD) simulations were performed to analyze the zein structural behavior under different pH values (2.0, 4.5, 6.8, 10.0 and 12.5), ionic strengths (0 mM, 25 mM, 50 mM, 75 mM, 100 mM) and temperatures (300K, 350K, 375K). Our results demonstrated the influence of these factors on zein protein's stability and conformational dynamics. At extreme pH values of 2.0 and 12.5, the Zein protein exhibited increased structural deviations and potential unfolding, while intermediate pH values closer to the protein's isoelectric point (pI) demonstrated more compact and stable conformations. Analysis of root mean square deviation, radius of gyration, solvent accessible surface area and Ramachandran plot provided clear understandings of the protein's compactness and surface exposure, confirming the impact of pH, ionic strength and temperature on the protein's conformation.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.