Juliana Pascarelli Compan Boechat , Felipe Rodrigues Semcovici Ramos , Felipe Betoni Saraiva , Vinicius de Lima Gonçalves , Franklin Souza da Silva , Carlos Roberto Alves , José Procópio Moreno Senna , Haroldo Cid da Silva Júnior
{"title":"Generation and characterization of a monoclonal antibody Fab fragment targeting PBP2a in methicillin-resistant Staphylococcus aureus","authors":"Juliana Pascarelli Compan Boechat , Felipe Rodrigues Semcovici Ramos , Felipe Betoni Saraiva , Vinicius de Lima Gonçalves , Franklin Souza da Silva , Carlos Roberto Alves , José Procópio Moreno Senna , Haroldo Cid da Silva Júnior","doi":"10.1016/j.jim.2024.113774","DOIUrl":null,"url":null,"abstract":"<div><div>Methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) is one of the main pathogens associated with nosocomial and community infections that are difficult to treat owing to its resistance to all β-lactams and other classes of antibiotics. Reports of MRSA demonstrate the pathogen relevance and urgency for developing innovative diagnostic and treatment strategies against this microorganism. In this context, monoclonal antibodies (mAbs) represent a powerful tool for such purposes. Beta-lactam resistance in MRSA is caused by penicillin-binding protein 2a (PBP2a). The characteristics of PBP2a make this protein a potential target for immunobiologicals to combat this pathogen. This study describes the development of a recombinant Fab fragment from a mAb directed against the PBP2a protein, designed to identify and treat MRSA infections. The Fd and light chain coding sequences for Fab expression were amplified and ligated into the mammalian cell expression vector. Recombinant DNA constructs were used to transfect Expi293F cells expressing anti-PBP2a Fab. A purification based on ion-exchange chromatography was used for Fab separation, followed by analysis of antigen target recognition and interaction, either with the isolated antigen or with the antigen on the MRSA cell surface. The experimental approach allowed us to obtain significant Fab expression levels in the Expi293F system when transfecting the cells with the genetic constructs developed in pCDNA3.4 vector. Antigen target interaction assays revealed the capacity of Fab to recognize and interact with the PBP2a protein. Biodistribution analysis indicated serum Fab presence, in the serum, kidneys, lungs, and spleen, and a plasma half-life averaging 6–8 h.</div></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"534 ","pages":"Article 113774"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022175924001595","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main pathogens associated with nosocomial and community infections that are difficult to treat owing to its resistance to all β-lactams and other classes of antibiotics. Reports of MRSA demonstrate the pathogen relevance and urgency for developing innovative diagnostic and treatment strategies against this microorganism. In this context, monoclonal antibodies (mAbs) represent a powerful tool for such purposes. Beta-lactam resistance in MRSA is caused by penicillin-binding protein 2a (PBP2a). The characteristics of PBP2a make this protein a potential target for immunobiologicals to combat this pathogen. This study describes the development of a recombinant Fab fragment from a mAb directed against the PBP2a protein, designed to identify and treat MRSA infections. The Fd and light chain coding sequences for Fab expression were amplified and ligated into the mammalian cell expression vector. Recombinant DNA constructs were used to transfect Expi293F cells expressing anti-PBP2a Fab. A purification based on ion-exchange chromatography was used for Fab separation, followed by analysis of antigen target recognition and interaction, either with the isolated antigen or with the antigen on the MRSA cell surface. The experimental approach allowed us to obtain significant Fab expression levels in the Expi293F system when transfecting the cells with the genetic constructs developed in pCDNA3.4 vector. Antigen target interaction assays revealed the capacity of Fab to recognize and interact with the PBP2a protein. Biodistribution analysis indicated serum Fab presence, in the serum, kidneys, lungs, and spleen, and a plasma half-life averaging 6–8 h.
期刊介绍:
The Journal of Immunological Methods is devoted to covering techniques for: (1) Quantitating and detecting antibodies and/or antigens. (2) Purifying immunoglobulins, lymphokines and other molecules of the immune system. (3) Isolating antigens and other substances important in immunological processes. (4) Labelling antigens and antibodies. (5) Localizing antigens and/or antibodies in tissues and cells. (6) Detecting, and fractionating immunocompetent cells. (7) Assaying for cellular immunity. (8) Documenting cell-cell interactions. (9) Initiating immunity and unresponsiveness. (10) Transplanting tissues. (11) Studying items closely related to immunity such as complement, reticuloendothelial system and others. (12) Molecular techniques for studying immune cells and their receptors. (13) Imaging of the immune system. (14) Methods for production or their fragments in eukaryotic and prokaryotic cells.
In addition the journal will publish articles on novel methods for analysing the organization, structure and expression of genes for immunologically important molecules such as immunoglobulins, T cell receptors and accessory molecules involved in antigen recognition, processing and presentation. Submitted full length manuscripts should describe new methods of broad applicability to immunology and not simply the application of an established method to a particular substance - although papers describing such applications may be considered for publication as a short Technical Note. Review articles will also be published by the Journal of Immunological Methods. In general these manuscripts are by solicitation however anyone interested in submitting a review can contact the Reviews Editor and provide an outline of the proposed review.