Alina M Badea Ionescu, Ion Ivan, Corneliu F Miclea, Daniel N Crisan, Armando Galluzzi, Massimiliano Polichetti, Adrian Crisan
{"title":"Magnetic Memory Effects in BaFe<sub>2</sub>(As<sub>0.68</sub>P<sub>0.32</sub>)<sub>2</sub> Superconducting Single Crystal.","authors":"Alina M Badea Ionescu, Ion Ivan, Corneliu F Miclea, Daniel N Crisan, Armando Galluzzi, Massimiliano Polichetti, Adrian Crisan","doi":"10.3390/ma17215340","DOIUrl":null,"url":null,"abstract":"<p><p>Among many iron-based superconductors, isovalently substituted BaFe<sub>2</sub>(As<sub>1-x</sub>P<sub>x</sub>)<sub>2</sub> displays, for <i>x</i> ≈ 0.3, apart from the quite usual Second Magnetization Peak (SMP) in the field dependence of the critical current density, an unusual peak effect in the temperature dependence of the critical current density in the constant field, which is related to the rhombic-to-square (RST) structural transition of the Bragg vortex glass (BVG). By using multi-harmonic AC susceptibility investigations in three different cooling regimes-field cooling, zero-field cooling, and field cooling with measurements during warming up-we have discovered the existence of a temperature region in which there is a pronounced magnetic memory effect, which we attributed to the direction of the structural transition. The observed huge differences in the third harmonic susceptibility at low and high AC frequencies indicates the difference in the time-scale of the structural transition in comparison with the timescale of the vortex excitations. Our findings show that the RST influence on the vortex dynamics goes beyond the previously observed influence on the onset of the SMP.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215340","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Among many iron-based superconductors, isovalently substituted BaFe2(As1-xPx)2 displays, for x ≈ 0.3, apart from the quite usual Second Magnetization Peak (SMP) in the field dependence of the critical current density, an unusual peak effect in the temperature dependence of the critical current density in the constant field, which is related to the rhombic-to-square (RST) structural transition of the Bragg vortex glass (BVG). By using multi-harmonic AC susceptibility investigations in three different cooling regimes-field cooling, zero-field cooling, and field cooling with measurements during warming up-we have discovered the existence of a temperature region in which there is a pronounced magnetic memory effect, which we attributed to the direction of the structural transition. The observed huge differences in the third harmonic susceptibility at low and high AC frequencies indicates the difference in the time-scale of the structural transition in comparison with the timescale of the vortex excitations. Our findings show that the RST influence on the vortex dynamics goes beyond the previously observed influence on the onset of the SMP.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.